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The statistical operator of quantum theory may be determined empirically by computations based
upon the measured mean values of a set of observables we have called a quorum. The requirement
that a statistical operator be positive semidefinite is then used to generate a family of inequalities
connecting these quorum means. Like the simpler uncertainty relations, these inequalities are
universal, valid for all quantum states. In the special case of pure states, the method yields a family

of equalities.

1. THE QUORUM CONCEPT

According to quantum mechanics, every reproducible
state preparation scheme II is characterized by a statis-
tical operator p in the sense that

Tr(pA) = (A), (1)

where A is the Hermitian operator for an observable of
interest and (A) denotes the arithmetic mean of data for
that observable gathered from an ensemble of systems
each prepared in the manner Il. Recently we have ex-
plored!.2.3 the problem of empirical state determination,
formulated as follows: given Il and the means to mea-
sure any A, how much data is needed in order to deter-
mine the unknown p ? This problem has been attacked in
the past by several authors, including Feenberg,4
Kemble,> and Gale, Guth, and Trammell.6

For an N-dimensional Hilbert space, any matrix repre-
sentation of relation (1) contains N2 — 1 independent
real unknowns in the statistical matrix p (also commonly
called the density matrix). This is a consequence of the
Hermiticity of p and of its unit trace. The unknowns
occur linearly; hence, if N2 — 1 observables {4} are
chosen so that the associated N2 — 1 linear algebraic
equations like (1) possess a unique solution set, then the
elements of the p matrix may be determined in terms of
the N2 — 1 mean values {(A)} by standard methods for
solving linear systems of equations.

We have elsewhere called a set of observables {A}
whose mean values {(A)} constitute sufficient informa-
tion to deduce the statistical operator p a quorum of
observables.

In the present paper it is sufficient to acknowledge
simply that such quorums exist, that the statistical
operator p may be expressed as a function of quorum
means {(A)}. It will be demonstrated below that such
representations of p, when considered in the light of an
old theorem in matrix algebra, permit us to generate
families of quantal inequalities reminiscent of, but more
elaborate than, the uncertainty relations. In the sequel
(Paper II) we shall investigate a new class of conserved
quantities which are revealed by the study of quorums.

The present authors have developed systematic pro-
cedures for the construction of quorums for physical
systems with N-dimensional Hilbert spaces and, under
certain circumstances, for systems with infinite-dimen-
sional Hilbert spaces.

Directly verifiable illustrations of density matrices as
functions of quorum means will be given below; the
reader interested in the philosophical and mathematical
origins of the quorum theory is referred to the literature
cited earlier,
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2. DEFINITENESS OF THE STATISTICAL MATRIX

Three independent defining properties are customarily
attributed to the statistical operator:

(i) hermiticity,
(ii) unit trace,

(iii) positive semidefiniteness,

Characteristics (i) and (ii) have already been incor-
porated into the quorum theory; every matrix representa-
tion of p which satisfies (1) and whose elements are
functions of quorum means will automatically be Hermi-
tian, and of trace unity.

Property (iii) may be derived? from the consistency con-
dition that a dichotomic observable, represented by a
projector |¢)(¢| onto a Hilbert vector ¢, must have a
nonnegative mean value since the eigenvalues of the pro-
jector are 0 and 1. Thus,

Tr(plo){¢l) =(plple)= 0. (2)

But ¢ is arbitrary; hence by definition p is positive semi-
definite, or nonnegative definite.

It follows that the quorum means of which statistical-
matrix elements are functions must be interrelated in
such a manner that the statistical matrix will be non-
negative definite. Such a connection among the quorum
observables is established by application of the old
algebraic theorem38 which states that all principal minor
determinants of a nonnegative definite matrix must be
nonnegative,

To be explicit, consider an N X N statistical matrix p
with (%, 1) element p,,. An n-dimensional principal
minor matrix is obtained by striking out N— » rows and
their corrvesponding columns; thus, the common element
of each struck row-column pair will be in the principal
diagonal of p. The standard proof that the determinants
of these minor matrices are all nonnegative is based on
the Hermiticity of the quadratic form (2) and on the in-
variance of determinants under similarity transforma-
tions,

Since each p,, is a function of quorum means {{A)}, the
nonnegativity of principal minor determinants is ulti-
mately expressible as a family of inequalities involving
the quorum means. Like the celebrated uncertainty
relations, these definiteness inequalities are valid for all
preparations of state.

The family of definiteness inequalities becomes a family
of equalities for » > 1 whenever the preparation is pure.
For a pure state, p is a projector )y |;in terms of
matrix elements,
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Pr = Wk\l/?. (3)

A typical minor determinant of a pure statistical matrix
will therefore have the form

W W) e (Vg Vi)
= WaWa, oo W) e gt ey ()

e blbz' .

Since the e-system is totally skew-symmetric and
\I/b’:tllb";- .o \1/,’,*, is completely symmetric, the minor deter-
g

minant vanishes, provided » > 1, Hence for a pure
statistical matrix all principal minor determinants with
n > 1 vanish; we can therefore generate a family of de-
finiteness equalities relating the various quorum means
in any pure state.

3. ILLUSTRATIONS

Several expressions are given below for matrix elements
of the statistical operator expressed as functions of
quorum means. As noted above, the procedures?® used to
discover quorum observables will not be reproduced
here, nor will the straightforward but sometimes lengthy
algebra by which the matrix elements are obtained from
systems of linear equations. There is, however, no need
for the reader to accept the matrix elements on faith;
their validity may be checked directly by using (1).

A. Spin-’%2 system
Quorum: o,,0,,
Statistical matrix:

o, (standard Pauli matrices).

1+G©,) (o) —io,)
P =z . (5)
(0,) + i) 1—1{o,)
Definiteness inequalities:
(1) One-dimensional minors:
1+¢) =0, 1—(o,)=0. (6)

The relations (6), involving only one component of the
polarization vector (¢}, are uninteresting since they con-
vey no information not already obvious from the
spectrum {— 1,+ 1} of 0.

(2) Two-dimensional minor (detp):

(1 —40,)2— (0,02 —(0,)2) = 0
or (1)
0,02 +40,)2 + (02 = 1.
Pure state definiteness equality:
(002 + (02 + (0 )2 =1. (8)
By subtracting (8) from the familiar equation

(02) +(02) + (02 =3, (9)

we obtain the following relation among uncertainties for
any pure spin-3 state:

(A0,)? + (40,)2 + (A0,)2 = 2. (10)

B. Spin-% system (alternative quorum)

Quorum: F,, P, F,, where P, denotes the projector onto
the o, -eigenvector belonging to eigenvalue + 1, etc.
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(B,) is the probability that a 0, -measurement will yield
+ 1,

Statistical matrix:

(P (B) —2)—i((B) — 2)
(p) = .

(B) =) +i((P) —3) 1-(B)
Definiteness inequalities: an
(1) One-dimensional minors:
0=(P)=1. (12)
(2) Two-dimensional minor (detp):
(B) +(B) +(P)) = (B2 +(P)2 + (P)2 = 3. (13)

C. Harmonic oscillator with 2-level energy cutoff

Quorum theory is readily applicable to systems with
infinite-dimensional Hilbert spaces whenever it is known
that the state preparation I has this property: there is an
observable C (the cutoff observablel0) whose probability
distribution vanishes except for a finite number 7 of C-
eigenvalues. Thus in a representation diagonal in C the
(infinite) statistical matrix will have only # nonzero
diagonal elements, From the inequality!l

1Pay| = (PP )12 (14)
valid for any positive semidefinite p, it then follows that
all elements of the statistical matrix vanish except for
an n X n submatrix.

In the present example, the cutoff observable is energy
H and n = 2; specifically, only the two lowest energy
levels have nonzero probability.

Quorum: x (position), p (momentum),
H = (p2/2m) + (mw?/2)x2,

Statistical matrix:
Let p, denote the 2 X 2 nonzero submatrix of p. Then

3 —(K) (X} —i(P)
pc=1% ; (15)
(X) +i{P) —1+(K)
where
K= (2/hwH, X=(2mw/h)2x, P =(2/mhw)/2p,
(16)
Definiteness inequalities:
(1) One-dimensional minors:
1=®K) <3
or (17)

Aw/2 =(H) = 3hw/2.

Relation (17) is expected for a harmonic oscillator cer-
tain to yield upon energy measurement one of its two
lowest eigenvalues.

(2) Two-dimensional minor:
8({x),{P)) = 2(H) — (Awy 1(H)2 — (3/4)hiw (18)
where

8({x), (D)) = ((P)2/2m) + (mw?/2)(x)2.
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The expression (18) is of interest in connection with the
classical limit problem since § is the classical energy
function with quantal means (x) and (p) as arguments;
thus, (18) reflects a basic disparity between classical
and quantal energy concepts. We intend to investigate
the quorum theory approach to the classical limit prob-
lem in another publication.

The foregoing illustrations in a two-dimensional Hilbert
space yielded several inequalities derivable also from
the well known relation
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However, in higher dimensional spaces a matrix of unit
trace may satisfy this inequality and yet fail to be non-
negative definite. Thus our approach will in general pro-
duce additional inequalities which are not derivable from
(19).

D. Spin-1 system

Quorum: J,,J,,J, (angular momentum components),J 2,
J2,d, 57,0 Whered,, =J,J, + J,J,. A discussion con-
cerning measurement of quorum members J,, is given in
Ref.3.

Trp? = 1. (19) | Statistical matrix (representation diagonal inJ_; % = 1):
1+ 3(J (1/2¥2)[(J,) + (J,,) H(I2) — (J2)
— (J2) — (J2) — (4, + (I, N] — i(d,,)
(1/22)[( ) + (7, ) (1/2/2)[(I) — (J,,)
= £ - J2 . 20
® + i) + 0] LB i) — O] (20
H(J2) ~ (I2) (1/2V2)[(J,) — (I ) 1 3((J,)
+ i) + i({d,) — (I, ] +(d2) +(J2)

Definiteness inequalities: !

(1) One-dimensional minors: Consider for instance the
(2, 2) element, which yields

(J2) + (J&Z) = 1. (21)
This is expected, since for spin-1 we know that

(J2) +(J2) +(J2) =2 (22)
and

g2 =1 (23)

(2) Two-dimensional minors: At this level the method
begins to reveal complicated new relationships among
the quorum observables that are not anticipated intui-
tively. As an example, we compute the upper left minor
determinant of (20).

[1+ H) — (I — 2N][~ 1+ (72 + (JD)]

— $[({) + (I, N2+ () +{I, N2) = 0. (24)

The first term in (24) may be simplified by applying (22)
to obtain

(T, + (I~ (JI2)

— () + (I, N2+ ((J,) + (I, N2]=0. (25)
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The expression (25) typifies the complex interconnec-
tions among the means of quantal observables that may
be discovered by generating definiteness inequalities.
Moreover, the equality case of (25) is illustrative of the
definiteness equalities which link quorum means for
systems prepared in pure quantum states,
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An expansion method in the path-integral formulation of quantum mechanics, as proposed in a
previous paper, is extended to account for states with odd parity. The method is tested on the case
of a one-dimensional attractive delta-function potential and the well-known solutions for both bound
and scattering states are obtained analytically by an exact summation of the expansion series. The
applicability of the method is discussed and it is shown how the energy spectrum could be

determined by means of Stieltjes theory of moments.

. INTRODUCTION

In a previous paper!® two of us (M.J.G. and J.T.D.)
proposed a new expansion procedure to solve the quan-
tum-mechanical problems starting from Feynman’s
path-integral formalism. This method allows us to treat
states corresponding to even wavefunctions and was suc-
cessfully applied to get the well-known spectrum of the
hydrogen atom. In the present paper we indicate how
this expansion method can be extended in order to ac~
count for states with odd parity. In our procedure the
general term of the series expansion may be expressed
in analytic form and therefore the convergence problem
could be examined in detail. For cases of practical in-
terest the summation of this series cannot generally be
carried out explicitly, except for some special situa-
tions. But knowing the formal expressions of all the
terms of the expansions for the quantities W and W,,
defined by Eqs. (3) and (11), respectively, we can de-
termine, at least in principle, the energy spectrum of
the problem with the desired degree of accuracy (and in
some cases this can be done by means of Stieltjes the-
ory of moments). To illustrate the method we give the
quantum-mechanical description of the one-dimensional
attractive delta-function potential, starting from the
path-integral formulation. We show that by an exact
summation of the expansion series one gets the results
known from solving the corresponding Schridinger
equation with appropriate boundary conditions. The ap-
plicability and the limitations of the method are dis-
cussed in the last section of the present paper.

Il. A NEW EXPANSION METHOD IN THE FEYNMAN
PATH INTEGRAL FORMALISM

We start from the density matrix p(rB, r,) expressed as
a Feynman path integral?

8
p(rs, xo) = [ expl- [, Hp,r,NaslDr(®), Y

where the integration is done over all possible paths of

the particle between the endpoints r, and r,. H(p, r, 3]

is the Hamiltonian of the system and it will be assumed
to have the form
H(p,r,t)=2p2+ V(r)=%1r2+ V(r) 2)

(the units are chosen such that #=m =1). The method
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proposed in I consists of evaluating the quantity
Wiry) = [ d3rep(ry, 1) (3)

by taking in (1) the series expansion of the exponential
function exp[~ [8 V(r)dt]. Each term of this expansion
leads to Feynman’s “Gaussian integrals” and after a
straightforward calculation one obtains the following re~
sult for the density matrix

p(r,, 1) = (—EFE exp( 35 (rg ro)2>

Z)("” f dt, - fdt]dk‘f(kl)
x f ks (6B, (e, 7o), )

where f(k) is the Fourier transform of the potential
function

fk) = f V(r)e ®*rd3r, (4a)
and P(r,, 1) is defined by

P,,(I'B, 1'0) = (2‘".3)-3 /2 exp[sn,cl(rgy ro)] ’ (4b)
with

1 i
Sn,cl(rs’ro) == §§ (rB - 1'0)2 + E jzsz tjkj(r,e - ro)
. 3 i ,
ity 2yk; =5 1.2;;1 Tk, -k,. (4c)

Here Ty, is a n-dimensional symmetric matrix, whose
elements are

Tj, = — (4t,/8) +3(t, + ) - 3| ¢, - t,|. (4d)

Inserting expansion (4) in (3) and interchanging the order
of integrations and summation, we get

W(r°)=1+§( 7 Wfdklf(k)---fdsknf(k)

xf dtl. . ’f dt" f dsrg-Pn(rgyro)- (5)
0 0

It has been shown in I that the aim of the integration
over r, is to get rid of terms of the form ¢, which ap-
pear in Ty, and consequently in the exponential of
P(r,,r,). After eliminating such nonlinear terms the
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integration over time variables is easily performed by
making use of the Laplace transform. Then the expan-~
sion for W(r,) becomes

(_ 1) - 3 ‘oo
W(r,)=1 +E e L (f d®k, f(k et

3 *ro 1
o R e oo e e B B
(6)

where
LH{f(s), 8} = F(B)

denotes the inverse Laplace transform of the function
f(s). In Eq. (6) the transform L™! can be evaluated in
the general case,? but the corresponding expressions
are lengthy and we shall not write them down.

It is easy to show that only the states with even parity
contribute to W(r,). Indeed, the density matrix p(r,,r,)
can be written as

Pty o) =20 0, (r,) b} (xo)e #5n, @

where the summation runs over both bound and scatter-
ing states of the system. From definition (3) it follows
that

Wiry) = [ d31, 20 ¢X(ro)d,(r,)e~#En; (82)

so that it is obvious that the states with odd parity
$o¥(—r,) = ~ $2%(r,) do not contribute to W(r,). By com-
paring Egs. (8) and (6) we can determine the eigenval-
ues E, and eigenfunctions ¢,(r,) corresponding to states

with even parity.

Generally it is quite difficult to handle a formula of type
(6). But if we are interested only in the energy spec-
trum of the system, we may considerably reduce the
computational effort by choosing r,=0 (as it has been
done in I for the energy spectrum of the hydrogen atom).
Then Eq. (8) becomes

Wo=W(0) = [ d°r, 2 $X(0)e~35n¢,(r,), (8b)
so that the information concerning wavefunctions is en-
tirely lost. Unfortunately the states described by wave-
functions which vanish in the origin of coordinates will
be excluded from (8b). Therefore for this particular
choice of the endpoint r,, we may also lose part of in-
formation concerning the energy spectrum correspond-
ing to even states (the odd states are eliminated from
the very beginning, as we pointed it out above).4

By choosing r,=0, formula (6) reduces to a simple form
for potentials which are homogeneous functions of
coordinates

V{ar)=2v(r), (92)
which implies for the corresponding Fourier transforms
f (k) =231 (k), (9b)

h being the homogeneity order. In this case, working up

the inverse Laplace transform, one obtains the final
formula (see I)
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(_l)n 1 Bmh/z

Ky f(ky f&,)
X/Tufﬁ”'/dsknlﬂkﬁu-+k,,)2’ (10)

where W, represents the quantity W corresponding to a
potential whose homogeneity order is % and T denotes,
as usually, the “gamma function.”

In order to give the quantum~mechanical description of
the system by means of an expansion procedure as dis~
cussed above, we note that any solution can be written
as a linear combination of odd and even functions and
therefore it only remains to indicate how to take into
account states with odd parity. We shall do it starting
from the evaluation of the quantity

W,(ry) = [ d°r,r,- Ve, PTs, To). (11a)

From expression (7) for the density matrix we can im-
mediately see that only the states with odd parity con-
tribute to W,(r,):

Wy(ro) = [ d3r, 2 1y U, $*(re)d,(rs)e85n. (11b)

By inserting expansion (4) into definition (11) and using
Eqs. (4b)—(4d), we find

W,(r,) = 3+?;1("1) —r/d3k Fli)- -

fdak,,f(k)f dt---f dt,

xexp( 3. E Tk k)S (ro), (12)
where
T¢j=%(ti+tj)"%|ti‘tjl (127)
and
sn(rﬂ)z{ﬁ;ﬁﬁf d*ryrg -V,
Xexp[ 38 <r,3 r,— zth )2+iro-§k,]. (127)

In Cartesian coordinates S,(r,) can be written as a sum
of three integrals of the type

1
Sx(r,) = XL

® 22
xexp(iro-jékj)f dyexp( 23'2)[ dzexp( _B)
d n 1 n 2
X dx<x+x0+ij2=31tjkj,,>(§x+i§1k,’)exp( 26)

(13)
The integrations in (13) are elementary and one gets

\ro)—exp<zro ijk)(l ring ik, = Z) AN )
so that (14)

S,(r o) =Sz(r,) +83(r,) +S2(r,)

n n n
=exp(iro-§lkj) (3 +iro-4’z;=1kj—%)ﬂt,ki -k,). (15)
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Therefore the quantity W,(r,) can be written as

W, (r,) =3W(x,) +RZ:>1-(-# _2;;1?;‘./ d%k, £ (k,)ettmo ..

fd“k,,f(k,,)e“n’Of dt, - f at,

n n
1
(zr‘, 2k, - Z}: ,) exp( 3 ;,E,s; T”kf.k,)

R
(16)
The integrations over time variables may be performed
as above, by making use of the Laplace transform.
Denoting
n

8 14 tn-
Vn(B;tl)=fo dt, fc Yaty- - [Tt exp(‘ 1?:1 Tk kl),

we have @
LV t) 1= 1
test), )= (s[s+k2] [s—a,+ (& +- k)]
1
>([S—Ot‘,+(kl+ +knﬁ]) o
1
=s[s+k21]---[s+(kl+-..+k’l)2]
3 1
xE[s+(k1+...+kp)2] . (18)

For completeness we write down the Laplace transform
(seel)

L{H,8),s]=1/s[s +1&]-« - [s + (&, +
for the function H,(8) defined by

-+k 2] (19)

n
H(B)=[lat, ' at,--- [ at, exp( R23 T,,k,-k,).

(20)
Now we can express W,(r,) by means of inverse Laplace
transform. From the well-known relation

E‘Z) F(j,p)= B F(j,p),

F=1pe] p=173=1
it follows that

1 _ N Kk +-ee+k,
;Qlk'kfpzﬁs+(k1+---+k,)2‘4=1kf'pz=1s+(§1+---+k,)2 ’
(21)
so that
W(I‘o) 3W(ro)+2(——]%-L' [/ d3k1f(ki)e“1’1‘o-.-
xf d’k, f (k,)ettnro
Y 1 1
xGr°'§ﬂk’S[s+%k€]"' [s+ 30+ - +K,F]
S (k1+ . +k)
_!,2;=1k!.[3+-12-(k1+"'+bky)2]

1
xs[s+%kﬂ...[s+%(k1+...+k")z]>’5]- (22)

W, (x,) = W(x,) +z,%1.)’T

1 N
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The inverse Laplace transform may always be ex-
pressed in an analytic form,?3 but the remaining integra-
tions over k cannot generally be exactly performed. The
evaluation of formula (22) is considerably simplified if
we choose r, to be in the center of coordinate; but then
we lose again all information concerning eigenfunctions.
Moreover, from Eq. (11b) it follows that the odd states
having a zero of order higher than one for r,=0 do not
contribute to W,(0)=W,

As we already mentioned it, the results are much sim-
pler for potentials which are homogeneous functions of
coordinates and in the present paper we shall write
down an explicit solution for W, only in this case.
Making use of the homogeneity condition (9b) and re-
membering that

1 [(r/2)+11n
1| s 8= RS IS @3)
we find
_ ( 1)" 1 B!(h/z)dlu
Wi=3W,- 22 = @™ 272 T{[(h/2) +1ln + 1}
s 1
X/d:’kl'f'(kl)"'f a’k, f (k,) I+ - [1+ & ++--KF]
& (ky +- -+ +kp)
x%llkj pz'gl.l"'(k +. "+k’)2 ] (24)

h being the homogeneity order of the potential.
I1l. APPLICATION TO A ONE-DIMENSIONAL
ATTRACTIVE DELTA FUNCTION POTENTIAL

In order to illustrate the applicability of the expansion
procedure we proposed in the previous section, let us
consider a one-dimensional attractive potential, de-
scribed by the function

V(x)=—y5(x), (25)
where v is a positive constant.

We start by evaluating the quantities

Wixy) = [ dngp(y,%,) (26)
and
W, (x,) = / dxs"séj}" plxg %), (27)
-0 0

which characterize the even and odd states, respective-
ly, for the case of one-dimensional systems. Expan-
sions (6) and (22) for the three-dimensional quantities
W(r,) and W,(r,) are reduced in the one-dimensional
case to

W(ry) =1 +Z) (;1;)—1; {_[ dy fly)etti%0. .

x f " F(R )ettnio 1
A PR 77 FEY P A

o

AT

(28)
and

{ f " i ) e ison . f " dk £k, et

<+ k) 1

g (zx°’z’318[s+-é-kﬂ- S [s 3R +e e R
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—l,zpﬁxk-' [s +i(Rky ++ - +k‘,)2] s[s +3 BZ] .-

TEFY) B}- (29)

c[s+i(k, +---
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The Fourier transform of the potential (25) being
f(k) == ')’,
Eq. (28) becomes

- 2”/2 +00 +00
W(xo) 1+ZwL {S"/”l f d A dkn

o -0

(257)

1 eixow/ﬁ'(klw-wk,,)
ves 30
x1+k21 1+(k1+---+kn?"3}' (30)

" e-lxow'z; }

The integrations over the & are trivial and we get
=1L+ 2
W(xo =L ;4‘":12_,,75 g (n72)+1 ,.B
e'|xolv/ﬁ

1 (31)
—L{ J—( e Rl }

Making use of tables for inverse Laplace transform,?
one finally has

Wix,) =Erf(l x0| /V28) + e-7n! g7 /2
xErte[(|x,] /V28) - 7VB/Z],  (32)

where the complementary error function Erfc is related
to the error function Erf by

Erfe(x)=1-Erf(x) =@/ 7) [ e *dt. (33)

By inserting (25’) into (29) and taking into account (28),
one finds after an integration by parts that

W,(x,) =1. (34)

From an expression of type (7) for the density matrix
p(x, %,) and the definitions (26) and (27), it follows that

Wixy)= [ dx, @ d*(xp)eBEs (xg)

4 J7 dhe S ¥ O )  (@5)
and
Wytng) = [ dryry (L & ormesres ()

+f° dke"*"z/?(p*(xo;k)(#(xg;k))> (36)

where the summation over s accounts for the bound
states of the system and the integration over % charac-
terizes the continuous spectrum.

The explicit solution of our problem can be obtained by
equating expressions (32) with (35), and (34) with (36),
corresponding to W(x,) and W,(x,), respectively. Since
the resulting equations are valid for a continuous range
of B,% the coefficients of ¢#% on both sides of these
equalities have to be equal; we get (see Appendix)

(a) one bound state (ground state of the system), with
the energy

E,=— %'yz (372)
and the wavefunction
By(x) = Vel (37b)

J. Math. Phys., Vol. 14, No. 5, May 1973

557

(b) scattering states, characterized by

ins Y2
B o3 B) ~ e~ 1R1EL 4 (’I:_z"';% irlsl (382)

for states with even parity, and
¢odd(x; k) ~ pikx _ g=ikx (38b)

for states with odd parity.

We may generally remark that for a free particle one
has W(x,)=1 and W,(x,)=1 and therefore we might have
seen from Eq. (34) without doing any calculation that
the states with odd parity are not affected at all by a
delta-function potential.

In scattering problems we do not need solutions having
a well-defined parity, because from the physical point
of view we have to study asymmetric situations. Indeed,
usually we are interested in the picture with a particle
which approaches from the region of negative (or, re-
spectively, positive) x, and after the collision on the
potential V(x) either turns back or continues to move to
the right (respectively, to the left). Therefore, for a
particle coming from the left our asymptotic solution
will have the form

D1e0r(x; B) =€ +A(R)e~#** for x<0,

®re1y (%3 k) = B(k)e *i** for x>0, (39a)

and analogously for the particle approaching from the
right

¢rlzht(x; k) =e"i* + C(k)ei** for x>0,

Drygnt (%3 ) = D{R)e " 15* for x<0. (39b)
Then the wavefunctions of the scattering problem will be
linear combinations of symmetric and antisymmetric
solutions (38a) and (38b), which satisfy the correspond-
ing boundary conditions (39a) or (39b). For instance, let

us consider that

a1¢even(x; k) + Qz ¢odd(x; k) (40)
satisfies condition (39a); then the coefficients «,, a,
will be solutions of the following set of linear equations

a {eikx +[(e+iy? /(B2 + y2)] e i} + o o (et — gikx)

= etk* + A(R)e-i*x for x < 0,

al{e-ikx+ [(k +iv)?/(k2 + v2)] e+ikx} +a,(erirr ~ e ikx)

= B(k)et?* for x > 0. (41)

By solving (41) we can determine the coefficients A(%)
and B(k), which characterize the amplitude of reflected
and transmitted waves, respectively; one obtains

AlR) =3 (% 1) =- Zz;‘;’j , (42)
B()=> <(:2+ :")2 +1) = ’Z&’;’f} (43)

As we expected, solutions (37a), (37b), (42), and (43)
for both bound and scattering states are identical with
those found by solving directly the corresponding
Schridinger equation.
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IV. CONCLUSION

The procedure proposed in I in connection with the hy-
drogen atom energy spectrum calculation in the Feyn-~
man’s path integral formalism and extended in the pres-
ent paper provides a method for solving quantum me-
chanical problems for potentials having Fourier trans-
form (the method may easily be adapted to cases when
the Fourier transform does not exist, as it has been
done for Coulomb! or harmonic oscillator potentials3).

Starting from Feynman’s formulation of quantum me-
chanics, we may reduce the problem of solving the
Schrédinger equation to that of evaluating expressions
which involve only “classical calculations”. Moreover,
the general term of the corresponding expansions may
be expressed analytically and therefore the convergence
of the series could be examined in detail.!*® The sum-
mations cannot generally be carried out explicitly, ex-
cept for particular types of potentials; but the knowledge
of the general term of the expansions allows, at least in
principle, to get numerical results with the desired de-
gree of accuracy. In a forthcoming paper a numerical
investigation of the rapidity of the convergence of this
expansion will be performed on some exactly soluble
models.

Unfortunately for potentials of a general form it is
rather difficult to evaluate expressions (6) and (22) for
the quantities W(r,) and W,(r,). The calculations be-
come much simpler if we put r, = 0 in both these for-
mulas, but the price to be paid for reducing the amount
of computations is rather high: We lose all information
on wavefunctions and possibly part of information con-
cerning the energy spectrum. Indeed, as we have seen
from (8b), all the states with even parity contribute to
W = W(0) except for those having zero’s in the origin
of coordinates. Similarly, from (11b) it follows that
only the odd states contribute to W = W,(0), apart from
those having zero’s of higher order than one for r, = 0.
In fact the situation is not so bad as it seems to be at
the first sight. For one-dimensional systems the quan-
tities W and W, will generally describe the whole energy
spectrum. In the three-dimensional case the problem is
more complex. For instance, for central potentials
which are less divergent than 1/#2 at r, = 0 (condition
which is satisfied by all the potentials of practical
interest), the regular solutions will behave like 7! in
the neighborhood of the origin, so that only the s and p
states contribute to W and W,, respectively. But for
many practical purposes the knowledge of only s and p
states seems to be rather satisfactory.

For completeness we remark that the ground state E, of
the system may be easily obtained from (6) or (10) by
applying the obvious formula

.. (3W
£~ (55) /¥ 4s)

After evaluating the quantities W and W, we still have
to identify the eigenvalues for the discrete spectrum.

That may be done by making use of the general theory
of the problem of moments.” Indeed, according to (8a)
and (12a), W and W, can be written as

W(B) = [ d*ryp(ty, o)l so=J dTs 20 &,(x,) 9} (0)e P2
= [ e"tBay(E) (452)
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and
W,(B)= [ ddryr,- V.o (Ta) ro)l,“=o
= f darBZ"; ¢n(r5)rﬂ * Vr°¢:(r0) l r0=oe-BE"
= [ esEay,(B), (45b)

where [*2«++ dy(E) and [t e+« dy,(E) are Stieltjes inte-
grals, the densities-of-states dy(E) and d,(E) being
defined from Eqs. (45a) and (45b), respectively.

By introducing new quantities S(z) and S,(z},

@)= eewaan= [ BB (462)
and ’
s,@= ) e wpas= [ B, (46)

we see that the moments p, and u‘”, corresponding to
these quantities S(z) and S,(z) and defined by

= [*° E*ay(E) (47a)
and
p = [ Eray (E), (47b)
can be expressed as derivatives of W(B) and W,(B):
B,=(- 1)” & W( 8 o (48a)
and
p = (= 1)» dB“ W (B)‘ (48b)

If the quantities W(8) and W,(8) and therefore the cor-
responding moments u, and u“’ are known, we may use
the mathematical results from the theories of continued
fractions and the moment problem in order to deter-
mine the eigenvalues of the problem. For applications
we may use, for instance, an algorithm proposed by
Gordon® in connection with the study of the canonical
partition function. But such an algorithm can be used
only if the moments of the problem are finite. That is
true for instance in the case of the harmonic oscillator.
The density matrix is then given by®

p(xg, %) = (w/27sinhpw)* /2
x exp{— (w/2sinhw)[ (x2 + x2)coshBw = 2x4x, ]},  (49)
so that

W, = W(0) = (coshpw)™* /2 (50a)

and

W, = W,(0) = (coshBw)™3/2, (50b)
and therefore all the moments will be finite. It is pos-
sible to show in the general case® that the divergencies
may appear only from the contribution to W, and W, of
the contimous part of the spectrum. The case of infinite
moments is more difficult from the practical point of
view, because we cannot apply any more the theorems
known from the theory of moments. However, the case
of the Coulomb potential (where the moments are in-
finite) has been solved in I by making use of some of
Grosjean theorems. '
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Note added in proof: Starting from the method exposed
in the present paper the §-function density matrix itself
has been evaluated by C. C. Grosjean, M. Goovaerts, and
F.Broeckx in a paper entitled “Evaluation of the density
matrix of one-dimensional systems in the path-integral
formalism” (to be published).

APPENDIX

In order to determine the eigenvalues and eigenfunctions
corresponding to states with even parity, we can equate
(32) with (35). But it is more convenient, first, to work
up expression (32), putting it in a form similar to (35).
Indeed, taking into account definition (33), Eq. (32)
becomes

W(xo)=ze~7|x°le.’za/2 +K(x0), (Al)

where

1 1xg! 1
K(x,) = 2\/=Tl’ﬁ.[o e'“zlzﬂdu—\/m

Ixpl
e""‘o"/‘ 0 /2B vur gy,
-0

(A2)
and making use of the equality
e-v2/28 /2_67 f+ae-ak2/ze(ukdk’ (A3)

one gets

* y? —iky

1
Keod=15 ), wE+y9 °

1 [ yi-iky

-BR2 /2 eiklxoldk

sns)2
o-8R?/2 <emx°r + Q{i’&z_ e-lklxol) ,
Y

TN A B(R? + 2 P+
(A4)

so that equating (A1) with (35) we find that

e PEsp*(x,) ~ 87 /2710 | (A5a)
or after normalization of the wavefunction

b (x)=Vyve %!, E =-3y2, (A5b)
and

D*(xo; k)~ et 5! +[(k — yi)2/(k2 + y?)] e~trlm!, (A6)
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Similarly from Eq. (34) and equality (A3) we get

__1 ” -ul /28 3, — __1 "~ a4 (218
Wl(xO)_ﬁ'[_G e¥ Zdu_—\/ﬁé . udu (e )du

== ‘—11;/ uduf dhe-8% 12(gitu 4. g-itu) (AT)
so that finally we obtain
1 (-
W, (x,) = el Xpd%g
xf dke~5% /2(eirs — o -thxg) d (e-i*%0 — gitn)  (A8)
o dx,
and, by comparing it with Eq. (34),
zp(xo;k),.‘(edtwco_ e-ikz()). (Ag)
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The series representation of the lattice Green’s function for the simple cubic lattice I(a)=m"3fTf7§7D !
dxdydz, where D =a — ie—cosx —cosy —cosz, around the singularity a =1 is obtained in fractional powers
of a2—1 (convergent for |a>—1|< 1), by the method of analytic continuation using a Mellin-Barnes type
integral and also by use of the analytic continuation of ;F, (, , ;, ;1) as a function of the parameter. It

gives leading and full expansions near the singularity a =1.

1. INTRODUCTION

In the previous paper! lattice Green’s function of the
simple cubic lattice at the origin

1 " dxdydz
I(a)—n_sf_/_/; @ — i€ — COSX — COSy — C0SZ ’

which has singularities at a=1 and a=3, was evaluated
in series representation for a>3 in powers of 1/4%, for
0<a<1 in powers of &2, and for 1 € a<3 in powers of
(@® = 5)/4 by the method of analytic continuation using a
Mellin—Barnes type integral. The exact values of I(0),
I(1), I(V5) were also given in terms of a product of com~-
plete elliptic integrals. The method was successfully
applied for the bee lattice,? the rectangular and the
square lattices® and the tetragonal lattice.* In this paper
the expansion of the lattice Green’s function of the sim-
ple cubic lattice around the singularity a=1, which was
not given in the previous paper, is presented.

(1.1)

First I{a) is expressed as a Mellin—Barnes type inte-
gral with the argument 4% —1. The integrand is a sum of
two series expressed in terms of the generalized hy-
pergeometric function ,F,( , , ; , ;1) which includes the
integration variable as a parameter. In order to obtain
the expansion in powers of a? ~1, it is necessary to
know the behavior of the integrand in the left-half plane
of the integration variable. The difficulty is that the
series in the integrand are divergent in the left-half
parameter plane while they are convergent in the right-
half parameter-plane. We have succeeded in finding the
behavior of the integrand in the left-half parameter-
plane by constructing the analytic continuation of ;F, in
the parameter plane. Then the series representation of
I(a) around & =1, which is convergent for la®-1| <1,
is obtained by residue calculations in fractional powers
of a®~1.

2. SERIES REPRESENTATION AROUND a*> = 1

For large absolute values of a (a>3), the following in-
tegral expression using a hypergeometric function has
been derived in the previous paper!:

_ 1 =54 r.(_s)[r(s_l_%)]z ____4‘ s
I(a) Eﬁj;_m ds——r—l"(s+1 (az)
x2F1<s +§,s+1;1;-;—2>, @.1)
|arg(-4/a®)| <, 2.1)

where § is a small positive number and the path of in-
tegration is taken as a straight line parallel to the
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imaginary axis. The restriction (2.1’) ensures the con-
vergence of the integration, and -4 is taken to be
4¢7'" gince we consider g in the lower half plane.®

Applying a formula
oFila,B5v2) =1 -2)°,F (a,y-Bv;2/(z - 1))

to the hypergeometric function in the rhs of the Eq.
(2.1) with @ =s + 3, we obtain

11
Ha)= =55

T 4 Dl=s)T(s + D) Petr) (azl 1)"‘”"’

ot T(s +1)

szl(s+§,—s;1;(Ti—(;2—)). 2.2)

Here we take the branch where (#)!/2=a.

Using the representation of the hypergeometric function
by a Mellin—Barnes type integral, we have

2 =G+i®
Ka)= 1 <L> f ds
m \2ni —geieo

5 [~°'+'°°dt I(s + YT(= OT(s +¢ + HT(=s + Dde )
~gtmio

I(s +1)T(t+1)
1 s+t+1/2
=)

where 5’ is a small positive number chosen so as to
make Re(-s +£)>0, i.e., 6'<5.

2.3)

Introducing a new variable u=s +¢ and changing the ord-
er of integration, we have

I(a)= % (—1'->2‘/.-6”+1’u° duT(u+ )@ -1)¥1/?

21 Jogrageo

"8+ (s +3)T(s —w)T(u—~2s)(det7)*

x/_;_w ds T(s+1)T{ +u-s) , @.4)
where 6” =6 +6’. Note that Re(s —#)=-56"<0 and
Re(u—2s)=06"-06<0.

Now the s-integration is carried out by collecting the
residues of the poles at s=3u+q and 3u+3%+q, ¢=0, 1,
2,..., in the right-half s-plane. Then we have

1 1y Fu+g+3)lg—2u)

P vee— — ~iryu /2+q
gai) 47T Zqz=;o CH'TCGu+qg+1)r1 +3u—q) (4e7)
1+ T(3u+q+1)T(g—2u+3)

) (4 e-ir)u [2+q+1 /2 .

—§¢=0 (2q+1)!1"(%u+q+%)r(%+%u-q '(2.5)
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It is shown that the summations with respect to g are
divergent for Reu < ~1, while the integration path in the
u plane is to be closed to the left-half plane where Reu
<0 to obtain the series valid for |4?| <1. Therefore it
is necessary to transform the summations of Eq. (2.5)
and to get other expressions which are valid for Reu<1.

The rhs of the Eq. (2.5) is expressed in terms of a gen-
eralized hypergeometric function ,F, with argument
equal to unity, and leads to

1
am

I'(3 + 2u)[T(= z0)]
rEra + 1)
Lyl i, _l..q
2 2W, 2y T 200,
"an[%,l +hu

f dse++= ‘/_ (4etn) 2 singun

Tl +3u)[T (G~ 3P
TREITE +u)

U, 1]

The expansion of a generalized hypergeometric function
in terms of hypergeometric functions of lower order®
[Eq. (5.1) in Ref. 3] and the value of ,F, with the argu-
ment equal to unity lead to a formula

+ T (4e 772 costun

(2.6)

3

1 1 1 1
1+3u,5-3u,5~3
xan 3,1
292 +3u

C(as) F @y ,0,,05;1
ey e ]

_ I8 +8 -0y —az~as)
T8, +8,—0,~a, T8, +8,—a,~q,)

X, F, Qg, By — 05,8, + B, —a; —0; —ay;1
B +3 -0, ~05,8 +8, ~a,~a,

2.7

Applying the formula’ (2.7) to the two ,F,’s in (6) with
agy=-3u and o, =3 - tu, respectively, we have

D(-3u) o [2+3u, - 2u,-2u;1
TOTA +Zu) * 24,1 +3u
(1 +u) F[ 3+ 3u,l1 +u,1+u;1]
b

3 3
I"(1+ LT (2 + 3u) 1+du,243

d 2.8)
an
I'(z-3u F 1+-é-u,%_%u’%_%u;1
TOTG+3w) 323, +2u
_ I‘(1+u) F 1+ 1+u 1+u1
TTEH T+ 30 ¥ 2[3+1u,2+3u
2.9

The two hypergeometric series in the lhs of Eq. (8) and

(9) are convergent for Rex > —1 while those in the rhs of
Eqs. (8) and (9) are convergent for Reu <0 and Reu<1,

respectively. The rhs gives the analytic continuation of

the lhs as a function of u.

Using the above transformations (8) and (9) and the
series representation of (F, (in the rhs) and changing the
order of summation and integration, we obtain

Lm)s/2 (@@ —1)1/2 Z() 1_717

FG+u) (=) T3+ su+p)[T +u+p)P smzu-n'
TA+TA +p+ 2T +p +3u)

Ka)=-
1
x5 f
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28"'/2 _ _ =, 1 1
x(az_1> (.,,)3/2(“2 l)llzﬁz-‘l)p' 2mi
T(3+uwT (G - 3L +p + 30T +p +u)P coszur
xJ & TA+uTE +p+2)T(2 +p + u)
ze-irlz u
% ( Z—1 ) -

Closing the integration path to the left-half u-plane, the
evaluation of the integrals is carried out by summing
residues of poles in the left-half u-plane. The poles of
the integrand are located at u=-%-¢, ¢=0, 1, 2,

and at u=-1-p—q, where p +q +1 is odd integer for
the first integrand of Eq. (10) and is even integer for
the second integrand with ¢ >0. The calculation is
straightforward but tedious, and we finally obtain

2.10)

Ka) =1, (@) +1,,...(a), (2.11a)

1 3 L +3¢)T( +3q)
hl®= 5757 B g {“ TG v 30T
zq,z q’%'

1 .1
X ,F, [‘ % ]
23 2q,4 %q
-Q _i)r(—i’"'fq)r(‘%'*'%q)
[TG+ 20T

3 ERpRE SRS | a® -1\¢
x_ F\1 zq’ q,2 q,] < >
3 2[% 3q,5-3q 4 )’
(2.11p)
1+27,5,-7;1 oif2
roﬁ;:'(__s [J”,’lﬂ, (@=-1P

1 (1) [(5,] 2+27‘,2,—7’1 rafz
tig 4 @, F0.@, " [2 +r,2 47 ]("2 Leres/

bl

(2.11¢)

where I, (a) and I, (a) represent regular and irregular
parts of I(a) at =1, and the leading singularity is

(@ ~1)/2, For & <1, the irregular part does not con-
tribute to the imaginary part but to the real part of I{a).
3F,’s in the irregular part are finite series and give
rational numbers.

The generalized hypergeometric function ,F,(a,, @,, a,;
By» By; 1) converges when o=} 8, -3 &, >0, and the con-
vergence becomes faster as o increases, i.e., the de-
gree of the convergence is of the order of 7, (1/n°*).
From the point of view of the convergence of ,F,(1), it
is more convenient to transform I (a) into another
form, though Eq. (2.11) is a desirable expression as
far as it goes. Using a transformation® of ,F,, we have

I (a):_l_ 1 < F(L_E_) FE_‘{’%-CI;%;I]CIZ—].)G
reg \/—2-17'372 q=0 ql 3" 2 Q_Eq’%__z_q _8
15 LG+ @G + 3P

q![TG +1gF

1 1 + 4 1)/ -1\¢
X_F [4 zq,e zqn 245 ]( )
M ER RS 2

w1 5=y —ilr G +g)[TG + 3)F
V2 q'TE+ 30T+ 19)
i-3,i-3q,%viq;1] (@@ -1

<m0 )

(2.114d)
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The convergence indices o in ,F,’s in (2.11d) are all
3 +¢, while those in (2.11b) are % + 37 and ¢ + 3¢, show-
ing better convergence than the original ,F, in (2.11b),

Now we investigate the radius of the convergence of Eq.
(2.11). Consider the double series T IA %%y general-
ized from the first term of (2.11d), where

_ TG -q+p)PTE +p)TGE - 39)T(E - 1q)
» g8 -@IrG - 2a +PT G- 2a +p)

Put p=2g; then from

1 JAgu,| | 1-22

=3 el R T
and

1 1Agpn| (41 =22

sTER| A, | T|Tonr
we have

1/r=|(xVs -s)/2| (2.12)

by eliminating . The double series $ A ,x%y* converges
absolutely in the region !xi <» and |y] <s, where » and
s are determined by Eq. (2.12). For s =1, we have
7=1. That is, the first term in Eq. (2.11d) converges
for 12 -11<1, i.e., 0<a<vV? for real a. The radii of
convergence of other terms in Egs. (2.11d) and (2.11¢)
are also shown to be |a® -1} <1.

The expression (2.11) includes only 2, while the orig-
inal form (1.1) depends on a such that I{a~ie)=~H~a
+ie). This suggests that the expression (2.1) has a
branch point at ¢ =0. That is the reason why Eq. (2.11)
is convergent for & -1 <1,

TABLE Al.

For & =1, only the terms of ¢=0 in Eq. (2.11d) [or Eq.
(2.11b)] do not vanish, and ,F,(1) for ¢ =0 can be ex-
pressed in gamma functions® and the exact value of I(1)
announced in the previous paper [Eq. (33) in Ref. 1] is
derived. The leading term is given by

Ka)=3m(1 +V2)[TE)T(D)]2 - (3¢/2n)(a® = 1)} /2 + O(a2 - 1).
2.13)
The third term gives a real part for a®<1.

Equations (2.11a), (2.11c), and (2.11d) are the series
representation of I{a) around a=1, convergent for
l~-11<1,

Note added in proof: The coefficient of the second term
in (2.13), —3/27, can also be calculated by the method
of Morita and Horiguchi [J. Phys. A 5, 67 (1972)].

3. CONCLUSION

The lattice Green’s function of the simple cubic lattice
is expanded at the singularity a=1 by the method of
analytic continuation in terms of a Mellin—~Barnes type
integral. In the process of calculation it is shown that
the analytic continuation of a generalized hypergeomet-
ric function ,F,(, , ;, ;1) in a complex-parameter
plane allows us to obtain the series representation of
I(a) in fractional powers of ¢ —1. The result is given in
Eq. {2.11) and the series is convergent for | & -1 <1.
It gives insights into the nature of the singularity and
simple and rapid subroutines for numerical calcula-
tions near the singularity.

The numerical calculation of Eq. (2.11) reproduces the
values in the table by Morita and Horiguchi.® The val-
ues of the first few terms of ;F, used are listed in the
Appendix.

oy

F g
2=/ [CE) T @)]2
0.142 8125286 E+01
0.176 4390652 E+ 61
—0.2086411048 E+02
0.182 5835244 K +03
-0.1518523862 E+04
0.124 1300083 E+05
- 0.1006733423 E+ 06
0.813 044 4869 £+ 06
—0.654 9578345 E+ 07
0.526 746 0718 E+ 08
10 —0.4231589025 E+ 09
11 0.339 6715097 E+10
12 -0.2724952366 E+11
13 0.218 506 5481 E+12

WO IO A WD

Fylg)
TGP
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F g
Ar@IEr@r
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0.1821375871 E+ 01
3477117660 E+01
6832596365 E+01
135354 5539 E+02
2680471748 E+02
5357641342 E+ 02
106 8076513 E+03
2130836520 B+ 03
4253238238 E+ 03
8492762411 E+ 03
1696281019 E+04
3388737729 E+ 04

cosHoOCoOBDRO O

.104 8372345 E+01
1036961127 E+901
1310778150 E+01
. 1891707243 E+ 01
.294 8617544 E+ 01
.4824681185 E+ 01
. 8159238967 E+01
.141306 0823 E+02
.2491485647 E+02
.4454815485 E+02
. 8055058548 E+02
. 1469922940 E+ 03
0.2702993008 E+03

R - -

APPENDIX: VALUES OF ;F,

The values of ,F,(, , ; , ;1) in Egs. (2.11¢) and (2.114)
are calculated by a subroutine based on the definition of
+F,. Those in I, (a) are finite series and give rational
numbers. Those in Eq. (2.11d) are infinite series with
o=13%+g¢ and the convergence becomes faster as ¢ in-
creases. Here we list the values of F,’s in Eq. (2.11d)
for the first several terms of ¢. The values of them for
large g can be calculated rapidly:

L_a g L
Fa(q)53F2[§ 9,5 -4,%; ]’

i 1
a~2q,5=2q

F{q)=,F,

lr:l'-- e

-;%qii—%q,%+%q;1]
,?+§q !

0 A

—-%q,%~%q,%+%q;1]

.
C(Q) e ’%"}‘%‘1
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Considering the Bethe-Salpeter equation as a relativistic equation, we have studied the free particle
Green’s functions for unequal mass scalar bosons, interacting via a translationally invariant poten-
tial. The scattering Green’s function found by Huang and DeFacio (HD) is presented for all possible
Q-plane contours for the unequal masses case. Only two k-plane contours are found to be physically
interesting. The causal, advanced, and retarded Green’s functions are listed in an appendix for un-
equal masses for the physical contour. The timelike Green’s functions again require severe restric-
tions on the interaction potential as found by HD, and possible Bethe-Salpeter bound states are

briefly discussed.

1. INTRODUCTION

The Bethe—Salpeter equation (BSE) was first postulated
as a configuration space differential equation by Nambu,?
although it was later named after Bethe and Salpeter,2.3
who obtained the BSE from a Feynman graphical analy-
sis. Many other early workers independently proposed
the BSE on different grounds and a detailed history is
available, including all BSE references through late 1969,
in the long and careful review article by Nakanishi.4

Most workers4.5 on the BSE have taken, as a fundamental
requirement on the Bethe—Salpeter (BS) amplitude, that

it should reproduce the Feynman-Dyson perturbation
series, or at least the (renormalized) ladder graph
series, A soluble model, called the Wick—Cutkosky®.7
model, is obtained by combining a Euclidean propagator
for the zero mass exchanged particles in the ladder graph
series. But the BSE is not analytically soluble when the
exchanged mass is nonzero, and this fact has led

Schwartz, 8 Schwartz and Zemach,® and Kershawet al,10.11

to an analytical analysis which leads naturally to com-
puter (numerical) studies of the BSE in configuration
space, Further references to many other authors who
have performed similar analysis in momentum space
and with various approximation methods are available

in Ref. 4 and Refs, 7-10. Other workers12-16 have

used the BSE as a basis for a dynamical theory with the
perturbation expansion as a fundamental requirement.
Although several workers17~19 studied causal propaga-
tion in the BSE and agreed with Schwartz and Zemach in
Ref. 9, Huang and DeFacio20 (hereafter HD) found that a
careful examination of the k~plane singularities lead to
very different results. HD showed that the causal bound-
dary conditions originally used could not lead to scatter-
ing boundary conditions, and in its place they presented
an equal mass scattering Green's function.

The view point taken in HD was that the configuration
space BSE

(Pt +mP) (PE + mB¥(1,2) = V(1,2;1,2)¥(1;2) (1)

is of considerable interest in its own right and therefore
should be studied without imposing such restrictions as
causal propagation and ladder graphs in perturbation
theory. HD then studied equal mass free particle
Green's functions for causal, advanced, retarded, and
scattering Green's functions using contour integration
methods. HD found that the scattering Green's function
was well behaved for spacelike separations of the two
particles but that the interaction had to vanish exponen-
tially for timelike separations of the two particles if the
Bethe—Salpeter amplitude is to be meaningful,

The present work extends HD's equal mass study to un-
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equal masses with an emphasis on the scattering Green's
functions. The scattering Green's function is studied for
all possible k-plane contours, a few remarks concerning
Bethe—Salpeter bound states are presented, and the
causal, advanced, and retarded Green's functions are
listed for the “physical” k-plane contour.

In Sec. 2 our notation and conventions are presented and
pole structure for unequal masses are given. In Sec. 3
the scattering Green's function is given for the following
(complete) set of k-plane contours:

(1) the outgoing wave contour: (B + g)(2 —gq) =
(B +q + i€)k - g —ie);

(2) the incoming wave contour: (¢ + g)(k — q)—
(k +q—ie)(k —q+ ie€);

(3) the first mixed contour: (¢ + ¢)(k — ¢q) >
(k+q+ie)k—q+ie€)

(4) the second mixed contour: (& + q)(k — ¢q) =
(k+qg—ieyk—q—ie).

In Sec. 4 the results and conclusions are presented.
Appendix A contains the real integrals with all singu-
larities removed, and Appendix B lists the unequal mass
Green's functions satisfying causal, advanced, and retard-
ed boundary conditions for the outgoing wave k-plane
contour,

2. NOTATION AND POLE STRUCTURE

All notations are the same as in HD and again only trans-
lationally invariant interactions, i.e. V{x,, %,, x1,%3) =
V(x; — x,,%{ — x,) are considered. Define the quantities

X = xq +x2,
P=py+py,
D =gy — b= (p,po), (2)

X =Ry Xy — PoXy = (%,10),

p-x =p-x —pot,

where u; + py =1 is the only condition placed upon the
p's and where X is the cm coordinate and P is the 4-
momentum cangnically conjugate to X, x is a relative
coordinate and p is the momentum canonically conjugate
to x. By letting w; and w, denote the energy of particles
1 and 2 in the center of momentum frame, it is useful to
define

V= Wy = Wy
when

w?, =k2+m? and

with & = k]|,

w3, =k2+m3
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Let us also define

R=|x~x| T=t-1t, 3)
An interval x — x’is called ¢imelike if T > R and space-
like if R > T. For translationally invariant interactions,
the BSE in Eq. (1) can be reduced to the fourth order (in
the 3,) partial differential equation

P2 —(po—v +wy)2 + mi]p? — (py — v — wy)?
+m3lx) = Vi, ). (4

The full solution y(x) to the BSE can be related to the
free particle Green's functions *G%, where + denotes sgn
(T), (@) signifies timelike intervals (1) or spacelike
intervals (o), and 7 denotes one of the physical boundary
conditions {scattering, causal, advanced, or retarded)

and ¢(x) the homogeneous solution to the BSE, according
to the integral equation

Yx) = ¢(x) + [2Ge(x — 2" V{xW(x")d4x', (5)

By following HD and using Fourier methods, the unequal
mass configuration space Green's function can be written
as (neglecting the super and subscripts for the time
being)

Glx—x) = f;'-:.g [k sin (R)(@,, 05)dk, ©6)
where
+ot e‘iﬂT
= as.
lonod) = L T o el =@ —op7]
4}

By extending the integrand of Eq.(7) to the complex ()
plane, the four poles of the integrand for unequal masses
are given by

Q== (wyp + @), Dy=wy,—wy,

93=——(w2k—-w2), and 94=ka+ wz- (8)

The + to the upper left of Green's functions from now on
indicates sgn (T') required to close over the contour at
(=) for the complex extention of Eq. (7). The four resi-

O, 0,
a) a S
o0,

FIG. 1. Contour
for the scattering
Green's function
in the complex

T=0 A plane.
Q! O
—— N
0, U A, W)
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dues at the poles in Egs. (8) written as *G; ({ = 1,2, 3,4)
become for the unequal mass case

‘o ig'l, VT k sin (kR)e'“ 1 dk
=¥
! 4m2R 0 w1, [wE, — (W1t @y + wy)?T
‘G iete T k sin (R)e ¥ dk
= F
2 A12R 0 w1 {(wy, @) — @)% — wE, [
o ie @ ks (kR)e™“2¥ dk
3 4n2R 0 wyy[wf— (@ + wy —wy)2T
*G ig et k sin (kR)e "“2*" gk ®
= ¥ .
' 412R 70 wy[(wgyt wy + wg)2 —wi,]

3. THE SCATTERING GREEN’S FUNCTIONS

The causal, advanced, and retarded Green's functions

are defined and listed in Appendix B. The scattering

Green's functions are defined in terms of the quantities

in Egs. (9) by the relations
tG;=%Gy +*Gy and “Ga+ TGy, (10)

which is equivalent to the contourl3 shown in Fig.1.

As in HD, it is necessary to study integrals of the form

keii(kﬁ iwlkr)dk

Liz2) = J (k+qsie)t —q % i€ (11)

in order to evaluate integrals of the form

KilgsieR.T) = [ k sin (kR)e" T dk 2
%1 = .

1g 216k, T) =}, (e + qtie)k —q 7Fie€) )

In order to close over the contours as 2 =, we must

require that the quantity in the exponential of Eq, (11)

a(s) = kR + a,T 13
satisfy + a(+) < 0, where

k=kpy + ik,
and

Wy, = ay +iay (14)
Using the relationship between a, and &,

ay =(/V2){[k} —kF + mP2 + dkghy]1/?
— (kg — k7 + mP)1/2h/2,  (15)

one constructs Table I which lists all possible contours
for each sgn (T) and for all possible space—time inter-
vals. In Fig. 2 the (UHP) and (LHP) contours!4 are
shown for the g = q + i¢ prescription for the two poles
of L(z,+) and the contours show how to avoid the branch
cut from —im, to +im, along the Im (k) axis. The in~
formation in Table I and Fig, 2 are adequate for the
spacelike scattering Green's functions.

However, for the timelike scattering Table I and Fig. 2
are inadequate because it is necessary to evaluate in-
tegrals of the form
wy e’ gin (kR)dw
Fy(q +ie,R,T) = [© —22 : CLI
my (wy,+ wy ie)wy,—w; Fie€) (16)
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As in HD, we study integrals of the form

+i(kRtw,, T)
I, ) = [ Q1€ Win an
(Wi, + wy tie)(w,,— w, Fie)

which has simple poles at wy, = —w; F i€ and wy, =

w, + t€ and two branch points at (—m,, + m,) which are
connected by a branch cut between these points. The
relationship between k; [note that k = (w$, —m$)1/2] and
the real and imaginary parts of w; ,from Eq. (14) is
given by

ky = (1/V2){{ag —ag —m$)2 + 4afad]l/2
— (a} —ag—mPL/22. (18)
By using Eq.(18) it is straightforward to construct

Table II which requires quarter-plane contours as shown
in Fig. 3.

Now one can evaluate the scattering Green's function
for all possible cases. It is expressed in terms of the
real integrals in Appendix A which have all of the poles
and singularities removed., For the contour shown in
Fig. 2, the scattering Green's functions include

jie-ivT elaR
8m(w, + wy) R
jetr T
412(w; + wy)R
+3i[W R, —T) + Ny(R, — T)] + 30 ,{Wi(R,— T)
+M{R,T) + N{(R, — T)]}, (20)

*Go(q + ie,R,T) = , (19

*Gi(g+ie,R,T) = {imete® — M R, —T)

o ir -
-Go(q +i€,R,T) = —— &% (21)
8m(w; + wy) R

and

ie_l(w2+y)T

“Gllg +ie,R,T) = {gﬂeiqﬁ + tM,R,T)

4r%(w, + w,)R
3Wo[WHR, T) + N3R, T)] + 5i[WoR, T)
tNLR,T) + w,MyR, T)]}. (22)

Another set of scattering Green's functions are obtained

from the incoming wave contour, These Green's func-
tions include

*Gq — ie,R,T) = [ie7i'T /8m(w, + wy)] e iR/R, (23)
*GT(q —i€,R, T) = [ie"“7 /812w, + w,)R]

x{i{W,R, ~T) + N;R, — T)]

—me"1" cos(qR) + %ﬂe—iqRewlT —M,R,T)}

+ [wlei(w’-u)T/Snz(wl + wyR)

x{{{W R, —T) + Ny(R,— T) —w,M,(R,T)
"7 _1) cos(qR) + 7/ 2w, (e 1" — l)e-iqﬁ},

(24)

GYq —ie,R,T) = [iei¥T/8m(w; + wy)]e i /R, (25)

+ ‘rr/wl(e_

and
"GU(q — i€ ,R,T) = [ie” " /8n2(w, + w,)R]
x{i[Wy(R,T) + N,(R,T)]

+ My(R,T) + re e 2T _ 9ne™2” cos(qR)
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TABLE I, Contours in the complex k plane with UHP referring to
upper half-plane, LHP referring to lower half-plane, and 0, 7 referring
to spacelike and timelike spacetime intervals, respectively.

al+) T

Contour

UHP
UHP
LHP
LHP
UHP
UHP
LHP
LHP

Contour

UHP
UHP
LHP
LHP
UHP
UHP
LHP
LHP

Space-time interval

T ++ 1 ++
Pl ++4++

4Qaaqaaaq

2
L

Space~-time interval

LTl ++++]=

+ 1 ++1 11+
NQaQaaaaq

FIG. 2. Contours for the integrals L(+, +) and L(~, +) in the complex

k plane. The solid line is for the integral L(+, +) and the dotted line

is for the integral L(—, +). Both contours are for the outgoing wave
treatment of the 2 = g poles (x) and different pole displacements must
be used for these poles for the g-ie and mixed contour cases.

— iw [Wy(R,T) + No(R, T)] —
—iqR(e—isz _ 1)

w?M;(R,T)
2T _ 1) cos(qR)}.
(26)

— Twee + 21w (e

Next we treat the first and second mixed contours.
From Sec.1,(k+ q)(k —g) = ( + g + ie) (k — q + i€)
defines the first mixed contour. Placing g £ ie in the
argument of *G _ to indicate this treatment of the k-
plane poles, the scattering Green's functions for the
first mixed contour become

'GU4q +ie,R,T) = [ie*“ T /an(w, + w,)R]

x(2¢7*“1T — 1) cos(qR), (27)

'Gl(q + ie,R, T) = [ie"(“’1_")T/87r2(w1 + wy) R
x{i[W (R, —T) + N (R, —T)
T cos(gR)] — S M, (R, T) + Jw[W (R, — T)
+N'1(R, —T)— (21i/w,) (e T —y) cos(gqR)
— i My (R, T)]}, (28)

+ 7me
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TABLE . Contours in the complex w,, plane using the same notation
as Table 1.

al+)

Contour

UHP
UHP
LHP
LHP
UHP
UHP
LHP
LHP

Contour

UHP
UHP
LHP
LHP
UHP
UHP
LHP
LHP

Space-time interval

P+ +++
L+ ++ 4+

4QaQaaaaq

2
L

Space~—time interval

FEr+++ 1+
il ++++[=
ag9aaaasa

FIG. 3. Contour for the integrals J(+, +) and J(—, —) in the complex
w ;5 Plane.

"6%q + ie,R, T) = [ie” 7 /4n(w, + wp)R] cos(qR),
(29)
and

“Gilq +ie,R,T) = [ieﬁ(wz“")T/8112(w1 + wy)R]
x {i[Wy(R, —T) + Ny(R, —T)
— iMy(R,T)] — wy[Wy(R,T) + Np(R,T) — iMy(R,T)
+ (mi/wy) (e “2" — 1) cos(qR)]}. (30)

Finally, we consider the second mixed contour

(2 +q)(¥—q) = (k+q —ie)(k—q —ie) placing g F i€
into the argument of *G  to distinguish this scattering
Green's functions from the previous ones, the scattering
Green's functions for the second mixed contour become

*Gq * ie,R,T) = [ie T /4n(w + w,)] cos(gR)/R, (31)
*G(q ¥ ie,R,T) = [ie' 177 /81%(w, + w,) R]
x{i[Wi(R, —T) +iM(R,T)
+Ny(R, - T) + me*“'" cos(qR)]
—w,;M(R,T) + 7(e*“'T — 1) cos(¢R)
+ iw[Wi(R, — T)+ Ny(R,— T)]} (32)
“G%g 7 ie,R,T) = [ie "7 /8n(w, + w,)] cos(qR)/R,
(33)
and

“GT(q % ie,R,T) = [1e”“=/81%(w, + wy) RIM,(R, T)
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+ i[W(R,T) + Nu(R,T)] — iw,[Wo(R, T) + No(R, T)]
— wyMy(R,T)}. (34)

The even numbered equations from Eq. (20) to Eq. (34)
give the scattering Green's functions for timelike inter-
vals and the odd numbered equations from Eq. (21) to
Eq.(33) give the scattering Green's functions for space-
like intervals. One sees from the properties of the real
integrals in Appendix A that all of the timelike scatter-
ing Green's functions become undefined as

lim +G1(q,R,T) > , (35)
R-00

as was first observed by HD for the equal mass case.
For the outgoing wave contour in %2 space, the spacelike
scattering Green's function satisfied outgoing spherical
wave boundary conditions with no approximation for R
large. For the extension of the spacelike scattering
Green's function, we obtain an incoming spherical wave
with no approximations, but the two mixed contours lead
to incoming and outgoing waves and therefore cannot
satisfy scattering boundary conditions.

4. RESULTS AND CONCLUSIONS

There are no well-behaved timelike Green's functions,
including the Green's functions in Appendix B, because
of the real integrals N, (R, + T),and N{(R, = T), i =1,2,
become infinite as R — «. All of the spacelike Green's
functions are finite as R — « but only the scattering
Green's function from the outgoing wave contour ¢ — ¢

+ je in the & plane has the correct asymptotic behavior
for scattering states. This ¢ — ¢ + ¢ condition is also
used to derive the nonrelativistic scattering amplitude
from the Lippmann-Schwinger equation. As already
mentioned, the spacelike scattering Green's function has
the exact scattering boundary condition form without
making any approximation for large R. The scattering
amplitude follows from the full solution to the BSE as in
Eq.(5) if we demand that the interaction V(x’) vanish
whenever x — x’ is timelike, for then we have

je"vT

T yixnuxnate.  (36)

V(x) = 9x) + 81w, + wy) © R

With the usual approximation |x| > |x’|, we have

iglx!-iuvT i X
: [ ewr-ia-xv(xy(xdis,

(37)

V(%) = ¢(x) +

8m(w, + wy)x

which allows us to identify the scattering amplitude

A @) = ———— [t -a- O V(x)y(x")d4x’.
8m(w, + wy) (38)
For negative energies the homogeneous solution ¢(x) no
longer occurs and the relative three momentum ¢ be-
comes Z|q| where |g/| is the real modulus of the pure
imaginary ¢. Then the spatial behavior of the spacelike

scattering Green's function becomes

+G(q + i€,R,T) —> e"'9'&/R (39)

R 00

which is the correct Green's function for a bound state.

The causal Green's function for spacelike intervals con-
tains linear combinations of incoming and outgoing
spatial waves and therefore cannot represent a scatter-
ing solution,as first reported by HD. And the causal
Green's function cannot represent a bound state for
negative energies because it is not stationary.
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The ¢ — q — i€ solutions correspond to incoming spheri-
cal waves as in nonrelativistic scattering theory and are
useful in final state interaction theories. The two mix-
tures are genuine solutions to the Bethe-Salpeter equa-
tion but are unrelated to physical scattering problems.

With the exception of a few minor changes, the Green's
functions for the unequal mass bosons is similar to the
equal mass boson case. Unlike some other problems?1
no new complications in analytic structure arise as a
consequence of the unequal masses.

APPENDIX A

The real integrals with all poles and singularities re-
moved are listed below:

m, ke kR sm[Vm?l— k2 T]dk
M{(R,T)=— [

0 k2 + g2
my ke *R gin[Vvm§ — k2 T]dk
MZ(R,T)Z"'L) k2+q2 s
my b ; 2 _p2 i b
N(R,T) = [ 1 exp[zw/m1 T] sinh(kR) dk
1M 0 k2 + g2 ’
my b exp[iw/mz2 — BZT] sinh(kR)dk
NZ(R’T) =./;) B2 + qz ]
wipT . 2 2,1/2
©w,,e sinh[(w{, + m7) " "R]dw
Wl(R,T)=f0 1% it 1 ] 1k
Wi, T wy
wopT s 2 2,1/2
w©w,,e 2k sinh[(wy, + my)  “Rldwy,
Wo(R,T) = [ Z t o )
2k 2 (A1)

For X,(R,T) a generic member of the list in Eq. (A1)
the quantltyX (R, T) is defined for i = 1,2 as
T
XY(R,T) = jo X,(R,T")dT’. (A2)
Also, it is sometimes necessary to have X,(R, — T) or

X! (R T) but the substitution T —» — T into Egs. (A1)
and (A2) give these real integrals.

APPENDIX B

In this appendix we define and list the causal, advanced
and retarded Green's functions for the outgoing wave
contour. We have also calculated the above Green's
function22 for the ¢ — ¢ — ie and the two mixed k-plane
contours, but they do not seem interesting enough to list
here. The causal Green's functions *G_ are defined by

*G,="G,+"G,, "G, ="Gzt Gy (B1)
Using the methods of HD, as in Sec. 3 for the scattering
Green's function, we find that

"GAq + ie,R,T) = [i/87°(w; + wy)R]

x {e*“T M (R, T) — iw,M)(R, T)

e—i(wzﬂl)T

+ Z-w(e""“lT__ DeiaR] —

X [My(R,T) + iwy My(R, T) + $me**" 1}, (B2)

"Gi(q + i€,R,T) = [i/87%(w; + w,)R]

x {e VT ;W (R, — T) + iN,(R, — T)

~w;Wi(R, — T) —w,; Ny (R, — T)]

J. Math. Phys., Vol. 14, No. 5, May 1973

567

— e T W (R, — T) + iNo(R, — T)

- wZWIZ(R’ -T)— wZNIZ(R’ - T)]}’ (B3)
— [i/87%(w;

« {ei(wl—v)T[% 7Teiqu

"GJlq +i€,R,T) = + w,) R]
- %Ml(R’T)
M(R,T)] — e 2T [My(R,T)

+iwy My(R,T) + 7(e’“2" —

+iw,
. %eiqﬂ]}, (B4)
and

_G;(q + i€,R,T) = — [i/gﬂz(wl + w,) R}
X {e" W (R, T) + N (R, T) + i0Wy(R,T)

e-i(wz* V)T[i

+ dw N1(R,T)] + W,(R,T) + iNy(R,T)

— waWo(R,T) — wyNo(R, T)]}. (B5)

The advanced Green's functions G, are defined in terms
of the residues from Eq. (9) as

*Ga=0 and “G,="G;+ Gy+ G3+°G,. (B6)

The outgoing wave k-plane contours together with Eq.
(B6) give for the advanced Green's functions

*GT(q + ie,R,T) =*G4(q + ie,R,T) = 0, (B7)

-Gﬁ(q + iG,R,T) = O’ (B8)
and

[i/8112(w + wy)R]
Wu(R,T) + 3 1 pet?
+ iNy(R,T) — szz(R, T) — wyNo(R, T)
+ My(R,T) — iwy Mo(R,T)]
— eI W (R, T) + iN,(R, T)
+w,Wi(R,T) + w;N|(R,T)
+ me 1Tt R 4 M (R, T} (B9)

G{q + ie,R,T) =
X{ z(w +u)-r

The retarded Green's functions G, are defined in terms
of the residues from Eq. (9) as

“Gr=0,
and

*Gr=*G, +*G, +*Gy +*G,. (B10)

By using the outgoing wave k-plane contour and Eq.
(B10), the retarded Green's functions become

i(g + ie,R,T) = “Gg(q + i¢,R,T) = 0, (B11)

*GX(q + iE,R,T) = 07 (B12)

and

Gl(q + ie,R,T) =
X{ 1(11 wl)T

[i/87%(w; + w,)R]

Wi(R,—T)

+ iN,(R, — T) +iw; M1(R,T) + w,Wi(R, T)

+w Ny (R, — T) — 3 M (R, T) + $me'?"]

+e U DT Wi(R, — T) + w,Ny(R, — T)

+ iwg My(R, — T) + My(R,T) — m(e*“2T — })e*?®
—iWy(R, — T) —iN,(R, — T)1}. (B13)
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On matrix superpropagators. Il
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The techniques developed in a previous paper (I) to compute the T product <¢Nqg(x), ¢N7,5 (o)>
for arbitrary N are extended to cover the case when ¢(x) is a Hermitian matrix-valued field in v
dimensions. We obtain a closed expression which is used to determine superpropagators like
<[expr¢(x)] o, [exped(0)]ys>>, which occur in strong interaction physics when ¢ is an SU(3)

field, say.

1. INTRODUCTION

In a recent paper (I) bearing the same title,1 a new
method was developed for computing the vacuum expec-
tation value (¢¥(x),,, 0¥ (0), 5) of matrix-valued sym-
metric fields ¢ in v dimensions. The result for v = 4
was applied to finding the exponentially parameterized
gravity superpropagator

(8a5(%);8,5(0), where g,,(x) = [expKp(x)] g,
which occurs in localizable nonpolynomial models of
quantized gravity.

In strong interaction physics the interest in nonpoly-
nomial Lagrangians is mainly centred on nonlinear
realizations of chiral SU(v). The purpose of this paper
is to show how the techniques of I are readily extended
to Hermitian fields ¢ making it possible to deal with
chiral SU(3) matrix interactions of the type

mW“Fo?(‘b)%,

which previous methods?® were at great pains to tackle,
We shall deduce the superpropagator (F(¢ (x))2, F(¢(0))$)
in closed form when ¢ propagates as

(98(x), $3(0)) = (8588 — cOB68)A(x). (1)

(Taking ¢ = 0, ¢ has the interpretation of a nonet, while
c=1% corresponds to an octet of pseudoscalar mesons.)
The power of the method allows one to calculate the
superpropagators for arbitrary parameterizations of the
matrix group, such as the exponential or Cayley para-
meterizations:

F=¢"5"% or (1 + bysko)(1 — dyh¢) .

F = unitary function of y;¢,

Central fo the whole approach of I was an integral re-
presentation due to Siegel giving the determinant |Y] of
a v X y symmetric matrix Y to an arbitrary power:

de|X| pe-Tr(XY) — Tf"("'l)/4ry(u)| Yi-s-Gr0r2,

LW=Tep+ e+ - -Tp+i@p+1]

dX = 11 dx; (2)
=3

the integration being taken over the space of all real,
positive definite symmelric matrices, Formula (2) is
therefore perfectly adequate for dealing with quantum
gravity. However for Hermitian fields one needs a
generalization of (2), and this reads

fdzizlpe—Tr(ZY) = g2 | Y |-k,

THW =T+ DI+ 2) - Tu+v) §,  (3)
dZ = 1 dz;; T dzzij
i=1 i<j

where the v2-fold integral is taken over the space of all
positive definite Hermitian matrices Z = (z U)' The
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proof of (3) is to be found in the Appendix. It turns out
that the calculations evolving from (3) although similar
to the ones evolving from (2) are in some respects
simpler—for instance there is no distinction between
even and odd dimensions—and this seems to be a reflex-
ion of the phenomenon that real analysis is often harder
than complex analysis,

The plan of the paper is as follows: In Sec.2 we show
how the matrix~valued superpropagator may be deduced
from a knowledge of (Tr¢¥, TroV) and in Sec. 3 we indi-~
cate how this quantity may be explicitly computed by a
use of representation (3). Finally in Sec.4 we write
down the superpropagators for chiral SU(3) in expon-
ential and Cayley coordinates. In places we shall be a
little sketchy since most of the algebraic steps are to
be found in I,

2. MATRIX SUPERPROPAGATORS

As in I we first show that the problem of arriving at the
general superpropagator

F(SENZ FHONY),  Fle) = T Fz/N! @)

is completely determined by a knowledge of the co-
efficients a, in

(Tr(¢pMx)), Tr(¢ M0)) = Nlvaya¥(x). (5)
For, making the ansatg,
(P¥E(x), 9F4(0) = NUBLES by — 5883cy)AMNx),  (6)

we obtain directly from Wick's theorem the pair of re-
currence relations

ay="by—vcy,
ay={¥— cWy_; — (1 — cV)cy.,. ™
Therefore writing the generating function of (5) as
a(k248) = v I{Tr [expx o(x)], Tr [expr H(0)])
= %} ay(k28)Y/N1, (8)

we find the generating function of the matrix-valued
fields (6) to be

([expke (x)]8, [exprep (0)]8)

v 1) 1({1;5365— 6868} d/d(k2a) +
= (ps — -

{{ev — 1)625? + {p— C)ﬁgﬁi}) alk2a).  (9)

Hence when we come to the general case (4) it is only
necessary to represent the coefficients F, as moments,
Fy = [t¥du(t) to make these superpropagators integral
transforms, e.g.,

(TrF(¢), TrF(¢") = [fdu(t)du ¢ vatt's).

Copyright © 1973 by the American Institute of Physics 569
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3. EVALUATION OF <Tr¢N, TroN>

Take the vacuum expectation value of two integrals
such as (3), making the substitution ¥ = 1 + k¢ and re-
membering that

(exp[TrZ¢(x})], exp[TrZ'¢(x)])
= exp[Tr(ZZ') — ¢ TrZ TrZ'|A(x)

from (1). Following the same steps as in I we arrive at

(Tr(gp¥(x)), Tr(p¥ ()= NAN(%)W IS, N),  (10)

where

155)(“,]\7) = fwﬁm%e'Trva((Z— c TrZ)M)

_ E (M) C)wa 189 (u, m). (11)
I'(n + pv + v2)

To make tractable the integral 1 (u, N), one notes that
the integrand is a function only of the eigenvalues of the
matrices involved which are necessarily real and posi-
tive. Changing to this set of variables, we have

v
dZ b YIJ kl—:ll dhk iIJ' (A.] - Ai)zy

where y_  is a normalization constant [determined by
1,49y, 0) = v] coming from the angular integrations of
parameters of SU(v) which diagonalize Z. Hence the
integral (11) reduces to

Yy {dxe*kk")n(x~>\)22 Ay

and involves the square of the Vandermonde determinant
I(x; — A;) rather than its absolute value as we had in I;
S0 we can apply a well-known identity? originally due to
Lagrange for integrals involving products of determin-
ants

IV(O) (u,N) =

f., *dn det(y; (r,)) det(x;(r))) = v! det faay,(M)x,0)  (13)
to (12) and obtain the basic form

(N)

(0)
189 (u, N) = r*( )Z Py Al (14)

with v

(N) f dre M aNrpriti2 =T(u+ ¢ +j+ N—1)

a(O) = aij' (15)

This should be contrasted with the expression one en-
counters in the real symmetric case, where in place of
of the determinant in (14) one meets a Pfaffian (= detl/2)
possessing much more complicated matrix elements,

4. CHIRAL SU(3) PROPAGATORS

Nonlinear realizations of SU(y) ® SU(v) bring in unitary
functions F(¢) of pseudoscalar meson fields transform-
ing under the (i, v) @ (¥, v) representation, and deriva-
tives thereof. Correspondingly one is faced with super-
propagators (4) when one performs a perturbation
expansion in the Lagrangian rather than the coupling
constant k. For v = 2 there exist perfectly adequate and
simple transform methods? for dealing with matrix
interactions F;but for v = 3 these transform methods
already become far too difficult to apply in practice
even if they are still valid in principle. It is, therefore,
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when v > 3 that our new techniques can be used to ad-
vantage. We shall show below how they work for chiral
SU(3) ® SU(3) in the exponential and Cayley parameteri-
zations of F,

To begin we need the basic coefficients a of (5} which
are in this case given by

= 3! o) N-n 3 1
N & § < >( & du'3I*(u)f(n + 3u + 9)
XY a(n)alAI

ij 0a;;

with the A matrix elements (15). The differentiation is
straightforwardly carried out to yield

Y (N
ay = "Z=0<n)(“' )V "[20,0— 0,1 — 35,,
+ 3+ 2)n + 3)], (16)
so the first few coefficients are
a, =3, =3 — 2¢ + 3¢2,

ete.,

a;=1—-3¢, a,
az; =5—9¢ + 3¢2 — 3¢8,

as can be checked by direct Wick expansion. More rele-
vant is the generating function of (8):

a®) =[2—¢— (£2/6)Je-ct + [1 + & + (£2/6)]e (1-¢% |
where £ = k2A. a7

For definiteness now suppose we have a nonet of pseudo-
scalar mesons, so that ¢ = 0 in (1), and consider firstly
the exponential parameterization

F(¢) = P cosk¢ + yg sinke. (18)

By taking even and odd parts in k2 in (9) we get the de-
sired superpropagator

16 ([expy k¢ ()]8, [expy 5k (0)]5)

8088 — §5B58)g’ (— k2 —
1 qf (30505 — 0868)a’(— k2a)
— (6508 — 36888)a(— x22)

+ (Kz > = Kz)’

(36868 — 6865)a’(— Kk2A) —
+y5 @ ¥5< a0y — 0u)) )
— (6308 — 36868)a(— k2a)

— (k2 > — k2) (19)
with
a®) =3 +[1+ ¢+ (£2/6)](et — 1), (20)

which demonstrates that the exponential superpropaga-
tor5 is nothing more than polynomials multiplying
hyperbolic functions of A, as was found? with chiral
SU(2); thus it is an entire function of A as expected. In-
deed as A — o,

((exP75K¢)i,(expy5K¢')$> ~{1®1-— Y5 ® 75)

x (6508 + 0508)(k24)2e*2,  (21)

whereas as A — 0 we, of course, recover the perturba-
tion series. Turning next to the Cayley parameteriza-
tion one can exploit the result (19) by taking an integral
transform
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1+ zy56¢ 0
— -t ysKk® /2
T_—f‘yﬁ f e ‘(2e's 1)dt

V8, V'8 =f0 dt dt' e (t+1'X(2e755 92 _ 1)8,

(2755972 _ 1)$)

YR ®E/2yg (YK BEI2y5
= [ dtdr e-Cee» ™™g @M
—3 1@ 18558

(22)
We shall not belabor the issue by giving the answer (22)
in gory detail except to mention that, as with all rational
Lagrangians, one meets at the very least incomplete
functions like [dt e-*(1 — k2At)-1, and their derivatives,
with their possible inherent ambiguities. By taking
other transforms of (19) the reader is equipped to deal
with other nonlinear realizations of chiral SU(3).

APPENDIX

For completeness we give a proof of formula (3):
J(u;Y) = fz>o dzZ|Z |k e-Tr(ZY)
= mgvlv — TE) Y Fe-v. (3)

Since dZ is the invariant measure on the space of
Hermitian matrices for |Y|> 0, we have on transform-
ing ZY¥ - Z

J,(;Y) = |y Fe-vd, (u; 1), (A1)
Introduce the notation Z, = (z,)), v>¢,j > v—k +1,

and uy = 2,4 (real);v, =z, @'= 2,3,...,v). Expanding
by the first row and column,
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1Zzl= 1z, =[u, —Z:2,0,9)]|Z,_, |, (A2)

where Z;1( ,) is the (real) quadratic form obtained from
the v X v matrix (Z;1). By hypothesis on the integration
region, {Z,| and \Z botl are positive. So changing to
the variable w = =uy — Z;1, (v, v), we obtain

J, ;1) =

—~fz >0dZu 1I

fz »08Z,|Z e Tr ey

_qlee - lf m}ff A2v,d2vy- » -d2y,
X (w“ e-w—Z;,_l(U,E))

= —n»l/-lr(u_ + 1)‘[‘Zu-1>0 dZu—l ‘Z

or J (u;1) = av-1T( + 1) J, 1 (p + };1).

v P1Z3L It Tréon
(A3)

On iterating (A3) with (A1) we obtain (3).

'J. Ashmore and R. Delbourgo, J. Math. Phys. 14, 569 (1973).

2R. Delbourgo, J. Math. Phys. 13, 464 (1972). J. Charap (private
communication).

3C. L. Siegel, Ann. Math. 36, 527 (1935).

*N. G. de Bruijn, SIAM J. Appl. Math. (Soc. Ind. Appl. Math.)

19, 133 (1955).

*If one had been dealing only with the propagation of the symmetric
field components ¢, corresponding to the matrices A%, A*, A%, A%, A%, A8
of SU(3), then the procedure of Ref. 1 would be relevant and the
generating function which replaces (20) is a(t) = te— < {Ei(¢) ~
2Ei¢/2) + Int/4+y — 2] + 8012-0)[2¢ — 3)sinh(¢/2) + (28 + 5)
cosh({/2) + 4], a much more complicated result, although also
entire in ¢ = k*A.
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If geodesics in space—time can be classified as timelike, null, and spacelike, the affine connection

must be of the form [l = {i,}+2g%e,, — (8i85+8

¥89 — gx8™)d,, with d, an arbitrary vector

and ey a tensor satisfying e ;. =e(;,= 0. It is possible to generalize Fermi’s law of transport to
this affine connection. The requirement that any observer be able to construct and maintain a
nonrotating orthogonal space triad along his world line by the bouncing photon experiment implies

the Weyl's geometry of paths.

1. INTRODUCTION

Recently,! the following result has been proved: Given
a metric tensor g,; of a normal hyperbolic type on a
differential manifold, the most general symmetric affine
connection that defines geodesics which can be classi-
fied as timelike, null, and spacelike with respect to that
metric is of the form

Jk = {Jik} + Zg‘“

with {‘,,} the Christoffel symbols, d, an arbitrary vector,
and ¢;;, an arbitrary tensor satisfying

— (6§68 + 64,02 — g;,8%9d, (1)

eGin = Cuge = 0 (2)

Assuming (as was in Ref. 1) that standard (atomic)
clocks determine the metric and that the world lines of
free particles and light rays are timelike and null geo-
desics, respectively, with respect to 1'",‘, we obtain a
space—tlme structure which may, in prmciple describe
a more general gravitational theory than Einstein's
(provided, of course, that field equations are available).

The purpose of this paper is to discuss Fermi's law of
transport in the generalized model of space—~time with
Eqgs.(1). The physical meaning of Fermi transport was
pointed out by Synge (Ref. 2, p. 123): An observer who
uses Fermi-transported spatial axes and shoots a
photon at a mirror will find that it returns in the same
direction (to the first order in the photons' time of
travel). An alternative, shorter (but in our opinion not

FIG. 1.
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quite rigorous) treatment was given by Pirani.3 We
shall see that in the case of the generalized medel this
physical requirement again selects a particular trans-
port law for unit vectors orthogonal to a certain
(observer's) world line.

Throughout this paper Latin and Greek indices, res-
pectively, take the ranges {0, 1, 2, 3} and {1, 2, 3} the
metric tensor & has the 51gnature (+1,—-1,—1,—1),co-
variant derivatives with respect to I‘j" are denoted by a
double stroke (e.g. &4l k), and the absolute derivative with
respect to a parameter b by 6/6p. In order to simplify
the formulas it is convenient, on occasion, to lower and
raise indices using the metric tensor and to denote the
scalar product g,; AB/ = A,BJ of any two vectors by
(AB): However, it must be kept in mind that covariant
differentiation does not commute with raising and
lowering of indices. Indeed, an equivalent form of (1) and
(2) is

gij“k = Zg‘l.]dk + 2eijk‘ (3)

All functions appearing in this paper are assumed to
possess a sufficient number of continuous derivatives.

2. THE GENERALIZED FERMI TRANSPORT

Given a timelike line ¥(w) = ¥#(w) and two vectors [¢(w)
and m i (w) orthogonal to Wi(w) = (d%!/dw) (w), we say
that these vector fields are strongly codirectional at
(wg) if I3 (wg) = mi(w,) and (d/dw) (tgra,,la(gl)’)/w:wo =

(d/dw)(gabm“(gg)/w:%, where (g(w) are the oéomponents of

an orthogonal triad in the 3-space orthogonal to Wi(w)
along ¥(w). Clearly [{(w) and m(w) are strongly codi-
rectional at #(w) if and only if #(w,) = m#(w,) and
(6/6w) 1 {wq) = (6/6w) mi ().

Every unit vector k} at X(w,) which is orthogonal to
Wi(w,), determmes a “field of directions of returning

light rays” ki(w), along the half of ¥(w) that consists of

events later than %(w;), in accordance with the following
construction (illustrated in Fig. 1).

Let %(v) be the world line of a hght ray leaving ¥(wg) in
the direction k4. This means that %(0) = %(w,) and
b} tH(w,) (d%#/dv) (0) is proportional to k§, where

pHw) = 6} — [W(w)W(w)]+ W (10) W, (w) (4)

is the projection operator on the 3-space orthogonal to
Wi(w). ki(w) is the unit vector at ¥(w), orthogonal to
Wi(w), such that the light ray arriving at %(w) in its
direction intersects ¥(v) (at a certain v). Obviously,
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ki(w) is unique in a neighborhood of w,. We shall see
later that ki(w)w—; k% (in the sense of fiber bundles).
!

A unit vector ni(w) orthogonal to Wi(w) along ¥(w) is
said to undergo generalized Fermi transport if for every
w,, nt(w) and the field of directions of returning light
rays determined by n*(w,) are strongly codirectional

at ¥(w,). A priori there is no evidence that such a vec-
tor field exists; however, we shall presently write a
transport law which generates such vector fields along
every timelike line [Eq.(31) below].

Without any loss of generality, we parametrize the rele-
vant world lines (Fig. 1) so that Wi points to the future
and » along %(v) is a special parameter with respect to
Thy (6/6v) (dx/dv) = 0. For every v the function of the
variable #, x = X(u, v), represents the light ray going
from the event ¥(v) to some event on the line X(w); « is
also a special parameter. Thus X (%, v) is a parametric
representation of a 2-space spanned by a null con-
gruence. We define 2-vector fields on this 2-space:

i o) = e w,0), Vi, o) = L (n,0) (5)
they satisfy the equation

2 Vitw,v) = & Uktw, 0. (6)

According to our parametrization we have %(w,) = %(0),
%(0,v) = ¥(v), and

£ Vi(0,2) =0, (VV) = 0 along ¥(v)
and Vi(0, ) points to the future; (7)

5 ...
o Uir=190,
Obviously, in a neighborhood of v = 0, U¥0, v) is not
parallel to V¥(0, v); in particular, U0, 0) is not parallel
to Vi(0, 0}, Therefore (V) > 0 in a neighborhood of
%(0,0).

%(w) is a timelike line in the 2-space ¥(u, v) and can be
represented by two functions u(w) and v(w) which satisfy
wwy) = v(wy) = 0 and X(u(w), v(w)) = %(w). As a result
we get

{UU) = 0 and U? points to the future. (8)

'_—..du ':@
u’—-z{ﬁ,?}—dw (9)

Wi=u'Ut+ 0'Vi,
along #(w). The fact that W is timelike and points to
the future implies ' > 0, v’ > 0, and 2u'v'(UV) +
(v)3(VV) > 0 in a neighborhood of w = ;.

According to the definitions

kb = AP; (wo) vi (0, 0), kt(w) = BP; (w)U? (u(w), v(wg.: )

0
where A and B are positive scalars chosen so as to
make %2} and k* unit vectors.

1t is possible now to achieve the final results by a direct
calculation. But we are still at liberty to normalize the
special parameters # and v without any loss of genera-
lity and the parameter w along *{w) without essential
loss of generality. In order to reduce the complexity of
the formulas we choose the following normalization:
(WW)=1, (WV)=1at wgy), (UV)= 2 along %(w).

11
This means, in particular, that we take dw = ds along
#(w). Equations (9) and (11) [with the aid of (7) and 8)]
imply
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4u'v’ + (VNAVV) = 1 (12)
along %(w) and

v'(wo) = w'(wo) = }. (13)
Equation (10) now takes the form

k§ = $Vi(0,0), — tUi(0, 0), (14)

ki=p'Vi —[(20)1 — U (15}

along X(w).
It is now easily seen that k*(w,) = kj.

The last step consists in differentiating Eq.(15) with
respect to w at w,. We have, of course,

] 6 , 8
w =%tV 5y

(16)
for any function of # and v. Using (6)~(8), (13), (15), and
(186) we obtain

%f‘bf (wg) = [u"(wg) + 2v"(wg)]UH(0, 0) + v”(wy) Vi(O, G)Em

Finally we want to express (0k/6w) (w;) in terms of
ki{w,) and covariant derivatives of W at w,. Equations
(9), (13), and (14} imply [at ¥(w)]

ki=Y—Ui+ Vi), Wi= Ui+ Vi), (18)
Ui=—ki+ Wi, Vizhi+ Wi (19)
Hence [at %(w0,)]
okt » ;
92 _ pki+ gWi,
5w a (20)
p=—{u"+v"), g=u"+ 3v".

Differentiating Eq. (12) with respect to w we obtain
fat %(wq)]
1 d

W= o (V). (21)

o]

Equation (9) implies [at #(w )]

GWi rri nyri _Lé__l_]_f
Tw S Ui+ v V‘+25y,

and a scalar product of 2¢(w ) with this equation leads to
the result

vy =L (p8U)_1L (80 _ (oW
—u" + v —4<Vﬁv) 4(Uﬁv)~(k6w)' (22)
Substituting from (21) and (22) into (20) we obtain

d _1fosU\ 1 [ &U
aw (VY q-z("a‘a)”z("ﬁ)

1 d &W
’“za';a“’“*(km

Equations (3), (6), (7),(13), and (18) imply [at wg)]

p =

o} =

). (23)

(V) = 2e,, VeVIWe + (V 2 ) (24)

Differentiating (UV) = 2 [Eq.(11)] with respect to wand

using Eqs. (3), (6), (7), (8), (13), (16), and (18) we cbtain
[at %(w,)]

5U 8U
(V %) =— (U %) — 8d,We — de,, VeUSWE,  (25)
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Differentiation of (UU) = 0 [Eq.(8)] with respect to v
gives

(26)

(U 'g’g) = eachgUb Ve,

Substituting from (24)~(26) into (23), we obtain

b=— daW“ + %eabc Ueytve — é‘eabt: veutwe + %eabc Veviwe;
\ , 5W @n
= ze“ch“U"V" -— 'geach“Vch - (k w“).

Replacing every U2 and V¢ appearing in {(27) by the ex~
pressions of Eq. (19) and making use of the symmetries
of the tensor e, [Eq.{2)] we obtain the final desired
expression for (6k¢/6w) (w,). In accordance with this
result and with the previous discussion we may say that
a unit vector nt(zw) orthogonal to Wi(w) along ¥(w) under-
goes generalized Fermi transport if and only if

Oni

*5-15 = (e nandwe — daW“)n‘

abde

+ [each"W”nc - ( %%)] Wi (28)

[The abrupt change in notation (from k* to n?) is to indi-
cate that whereas & satisfied condition (28) only at
%(w,), any n* that undergoes generalized Fermi transport
does so along the curve x{w).]

Synge (in a private communication) has given the follow-
ing alternative and shorter derivation of (28) from

(20): Since by construction (WW) = 1, (kk) = — 1, and
(W) = 0 along %(w), Eq. (20) (6ki/6w = pkt + qW?) im~
plies at Z(w,)

5k 6k
b8 o B

From the equations (d/ dw) (kk) = 0 and (d/ dw) (kW) = Owe
have

(29)

o\ _ 1
- (k 6_w) = 5 &ap KR W,

5k oW
(Wm) = — gapykIWOWE — (k 613) (30)

Substituting (30) into (29) and (20) and making use of
Egs.(2) and (3) lead immediately to (28).

In the case that w along ¥{(w) is not the metrical length
(in the generalized model of space—time s is not the
only natural parameter along every timelike line), it
easily comes out that a unit vector »n#(w) orthogonal to
Wi(w) [= (d%i/dw) (w)] undergoes generalized Fermi
transport if and only if

i .
L = (Carenon?We — d W

+ (WW)t [each“an'-‘ - (n -2-1%')] Wi, (31)

This equation is not linear in ni,

We want to emphasize that the last equation is the neces-
sary and sufficient condition for a given field of unit
vectors orthogonal to W' to be strongly codirectional at
every event with the field of the directions of the retur-
ning light rays determined by the member of the given
field at this event. The question now arises as to
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whether this equation, as a transport law for vectors,
retains the unit length of an arbitrary ni(w) and pre-
serves the orthogonality relation between Wi{w) and
ni{w). The answer is that it does. For suppose that the
field ni(w) along X(w) satisfies (31). Then, via (2), we
obtain

L (W) = (e punondWe + d, We)ouw);

3%("") = 2(Ww)-1 [each“ Wone — (n —gg)] {nW)

+ 2e,,n*nPWe(nn) + 2e,, mndWe,

The first equation implies that if (nW) vanishes at one
event then it vanishes along the whole line. And if, in
addition, (#z) = — 1 at one event, then the second equa-
tion ensures that (nn) = — 1 along the whole line. There-
fore, (31) is indeed a transport law for unit vectors
orthogonal to a certain timelike line, and we shall call
this equation the generalized Fermi transport law.

3. CONSERVATION OF SCALAR PRODUCTS
BETWEEN FERMI TRANSPORTED VECTORS AND
THE WEYL’S GEOMETRY OF PATHS

The generalized Fermi transport may be considered as
a transport law for spatial axes along an observer's
world line if it preserves scalar products (or at least
the orthogonality of vectors). Let ni(w) and m*(w) be
two unit vectors orthogonal to W along X(w), subjected
to the generalized Fermi transport (31). Via (3), (31),
and the concluding remarks of the preceding section we
get

a%(nm) = 2e, nembWe

+ (am ey nent We + ey memdWe),  (32)
This equation implies that if the generalized Fermi
transport preserves the orthogonality relation between
vectors, then

€ pntmEWe = 0 (33)
for every three orthogonal vectors n¢, me, We such that
We is timelike. A cumbersome but straightforward
calculation, using a system of coordinates in which
g;; = diag (+ 1,— 1,— 1,— 1) at one event, shows that
(33) and (2) imply

€jp = &€ %gkiej - %gjkei’ (34
where e, is an arbitrary covariant vector, and (34) in
turn implies (d/dw) (mm) = 0, even if n and m* are not
orthogonal to each other, as is easily seen by a direct
substitution of (34) into {32). Therefore, a necessary
and sufficient condition for the generalized Fermi trans-
port to preserve the scalar product or (at least) the
orthogonality relation between vectors is that e;;, be
of the form (34); d, is still arbitrary. And in this case
the transport law can be further generalized to an arbi-
trary vector A‘ (not necessarily of unit length and ortho-
gonal to W#) in the form

%%f =— (e,We + d, WA + [eaAa — (Ww)L (A g—g )] wi

+ wwyraw) 9 (35)

This is the generalized Fermi~Walker transport (Ref. 2,
p.13),and it is linear in A%,
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The projective transformation T'}, - I'}, + 8}y, + 8}y,
where ¢, is an arbitrary covariant vector, is the most
general change of an affine connection that preserves
the geodesics.4 Since

Sl + Oy = — 2g%e,, + 2(8]04 + 0107 — 2,8 W
where €/,, = 38,V + 28,,¥; — &V, 2 projective
change does not spoil form (1) of the affine connection,
nor does it spoil the form (34) of e, if e,;, has that
form. In the latter case, a projective change with y; =
— e; transforms the I'j, into

Tj, = {i} — (0j64 + 8}6% — g;,8')d, — 2¢,).

We recognize here the affine connection of Weyl's
theory of gravitation and electromagnetism. Thus we
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have proved that the Weyl's geometry of paths follows
from the requirement that the generalized Fermi trans-
port preserve scalar products.
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Linear adiabatic invariants and coherent states
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The Born-Fock adiabatic theorem is extended to all orders for some quadratic quantum systems with finitely
or infinitely degenerate energy spectra. A prescription is given for obtaining adiabatic invariants to any order.
For any quadratic quantum system with N degrees of freedom there are 2N linear adiabatic invariant series,
which correspond to the 2V exact invariants. The exact quantum mechanical solution for any nonstationary
quadratic quantum system is also constructed by making use of the coherent-state representation: The Green’s
function, coherent states, transition amplitudes and probabilities and their generating functions are obtained
explicitly. Two particular systems, the N -dimensional time-dependent general oscillator and charged particle
motion in a varying and uniform electromagnetic field, are considered in greater detail as examples.

. INTRODUCTION

Recently there has been renewed interest in the subject
of exact and adiabatic invariants for both classical and
quantum systems. The main purpose of this paper is to
find all the linear integrals of motion of an arbitrary
time-dependent quadratic quantum system and to con-
struct adiabatic invariants from the exact solutions by a
method of expansion. Lewis and Riesenfeld! have deve-
loped the method of time-dependent invariants and ap-
plied it to classical and quantum oscillators and to
charged particle motion in a uniform electromagnetic
field. Lewis's treatment of the harmonic oscillator was
extended to general linear and nonlinear classical os-
cillators by Symon,2 who gave a prescription for ob-
taining a quadratic adiabatic invariant as a power ser-
ies to any order in the variation of the coefficients.
Earlier Kruskal3 proposed a method for obtaining quad-

ratic adiabatic invariants of the action type I = .5 pdq,
for classical systems, all solutions of which are nearly
periodic. By successive application of Kruskal's theory
one can obtain I' invariants, where I' is the number of
the system periodicities and I = N, N being the number
of the degrees of freedom. Kruskal's method was gen-
eralized by Stern? for constructing new invariants,
which in specific cases coincide with I, Namara and
Whiteman3 gave another method for the construction of
adiabatic invariants by expanding the Poisson brackets
in series. The problem of adiabatic invariants is dis-
cussed in Ref. 6. In this paper we suggest that for any
system there must be 2N adiabatic invariants,which
correspond to the 2N independent exact invariants. In
the case of quadratic systems these invariants are lin-
ear with respect to the coordinates ¢; and momenta p,
and we construct them here explicitly. Any other in-
variant can be built up by means of linear ones. We have
constructed the 2N invariants for quantum systems and
they certainly hold for classical systems too.

The problem of adiabatic invariance in quantum mecha-
nics has been treated by many authors.?"11 Born and
Fock7? proved adiabatic invariance to first-order in the
adiabatic parameter for quantum systems with a non-
degenerate energy spectrum. An extension of this the-
orem to all orders was made by Lenard8 for those
quantum systems which have a {inite number of nondegen-
erate states. Dyhne?® considered the quantum oscillator
and charged particle motion in a nonuniform magnetic
field in the adiabatic approximation and showed the tran-
sition amplitudes to be exponentially small. Some adia-
batic theorems in quantum mechanics were proved by
Young and Deal.l10 In Ref. 11 the S matrix of the quantum
oscillator is expanded in asymptotic series. In this
paper we demonstrate the validity of the Born-Fock
theorem to all orders for quadratic quantum systems.
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All 2N adiabatic invariants are also shown to be con-
stant to all orders. The familiar adiabatic invariants,
i.e., the ratio of energy to frequency (action) of the har-
monic oscillator and the magnetic moment of a particle
in an electrogmagnetic field can easily be expressed as
quadratic invariants in terms of the linear ones and
shown to be also constant to all orders in the quantum
case as well as-‘in the classical case. The constancy of
the magnetic moment in all orders for the classical par-
ticle was derived by Kruskal,12 and Kulsrud!3 proved
the same for the ratio of energy to frequency of the clas-
sical oscillator. The total change of the action adiabatic
invariant of the one-dimensional classical oscillator was
calculated by Dyhne.? For the quantum oscillator this
was done in Ref. 14. We give here exact formulas for the
changes of all linear and quadratic adiabatic invariants
of the N-dimensional general harmonic oscillator. For a
charged particle, moving in a uniform electromagnetic
field, and for the N-dimensional oscillator, this was done
in Ref. 15.

The adiabatic invariants are obtained by expanding the
exact ones in asymptotic series in the time derivatives
of the coefficients of the Hamiltonian. The exact time-
dependent invariants of quadratic quantum systems can
be easily derived in terms of the solutions of linear dif-
ferential equations. If the exact solutions of these equa-
tions are not known (as is the case, in general, as we
shall see), one can always solve them recursively and
use the adiabatic invariants.

So it is of considerable interest to have a method for
obtaining adiabatic invariants and to investigate the
accuracy of their conservation. By using the exact lin-
ear invariants and the coherent state representationl®

it is easy to construct the solution of the Schrddinger
equation for any quadratic system. Following the method
of Refs. 15 and 17 we solve this problem in Sec.II, ob-
taining explicit formulas for the coherent states, Green's
function, and transition amplitudes and probabilities and
their generating functions. Transition amplitudes con-
necting any initial energy eigenstate to the final one are
expressed in terms of Hermite polynomials of 2N vari-
ables.18 We consider in greater detail some systems,
where the solution of the wave equation can be expressed
in terms of the solutions of a simple and familiar equa-
tion,i.e.,the equation of motion of the classical oscil-
lator. The problem of adiabatic invariants is treated in
Sec. III.

Il. N-DIMENSIONAL TIME-DEPENDENT
QUADRATIC SYSTEM. EXACT SOLUTION
A. Coherent states and Green’s function

We consider a quantum system whose Hamiltonian is a

Copyright © 1973 by the American Institute of Physics 576
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general quadratic form with respect to the coordinates
q; and momentap;, j =1,2,...,N(k =c = 1)

H(t) = B 5(0@.Qs + C(DQ

where Q, =p;, Qu.; = q;,and the Hermitian matrix B(¢)
and the real vector C(ti are arbitrary functions of time.
Hereafter quadratic forms of the type (1) will be writ-
ten as

H =QBQ + CQ. (12)

01,B=1,2,...,2N (1)

The range of the Latin indices is 1,2,...,N,and the
Greek indices run over 1,2,...,2N. The harmonic os-
cillator and the motion of a charged particle in a uni-
form electromagnetic field are the most familiar parti-
cular cases of (1). The time-dependent quantum oscil-
lator was thoroughly examined by Husimi,1? and later
many authors1.9:11,14,15.20 have treated different as-
pects of the problem. Coherent states for nonstationary
quadratic systems were first introduced in Ref. 15 and
used for calculations in the problems of the N-dimen-
sional oscillator and charged oscillators in uniform
electromagnetic fields.15:17.21 Recently Holz2! con-
structed coherent states and calculated transition ampli-
tudes between them for a system of the type (1) with

I a(t)
B(t) = <a(t) b(t))’ (2)

a(t) and b(¢) being N X N real matrices.

In accordance with the suggestion in Ref. 15 we look for
2N exact linear invariants of the form

Ia(t) = Amﬂ(t)QB + 6a(t)’ (3)
or,in matrix form,
1) = A(D)Q + 6(¢), (3"

where the matrix A(f) and vector 6(¢) are defined in ac-
cordance with the requirement

%1@) — i[It),H] = 0, (4)
which leads to the following differential equations
A =ARQ), (5a)

5 = iAo ,C(t), (5b)

the two 2N X 2N matrices R and ¢, being defined as

R =io,[B(t) + BXt)], o0, = i(? _é>. (6)
We choose the initial conditions

A(0) =1, o6(0)=0 (7)
and write the solutions of (5) as

AW =T exp(_ [ ’dtln(:l)) , (8a)

8(t) =i fy Alt,)o,Clt,)dt,, (8b)

T standing for the antichronological product. The nor-
malized solution A(t) exists for any continuous R(?),i.e.,
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for continuous B().22 By virtue of (7) we have the com-
mutators

[Ia(O),IB(O)] = [Qa’ Qﬂ] = (GZ)OL,E’ (9)

and remembering that the evolution of any Heisenberg
operator is I(t) = S~1I(0)S, we derive

(L), B())] = (02)y85 (10)

which imposes upon A the relation

Aoy A =0y, (11)

A being the transpose of A. The commutation relations
{10) are invariant under the transformation I’ = CI,
where C is a symplectic matrix. This corresponds to
another choice of initial conditions for A and & or to a
canonical transformation in phase space. It is clear that
(3) is also a canonical transformation.

In order to apply our methodl5 we introduce,instead of
I(t),lowering and raising operators A j(t),A'g(t):

in accordance with the formulas

i,j=1,2,...,N (12)

A1) = AN2)LE) + 1y,;0]). (13)

We rewrite (13) in the form

1
Aj; = vz [ e+ (), 0 + 451 (14)
where

a; = 16]- + 6N+j7

Ay Ag
Ap=Az HiAp A, =iky Fy, A )
Az Ay

Further we follow Ref. 15, and for this reason the details
of calculations are omitted. Coherent states | a;?), ¢ =
(al, . oo, 0y), with a being complex numbers and
. 9
A lasD) = ajlash), ( 2 —-H) lasfy =0  (15)

are obtained as an exponential of a quadratic

[ a;t) = I°N/4 explo(t) + w(t)g — zqu(t)q], (16)
where
p=igh,  v=—agla + (1N2) (A] = De,
(17a)
o = o(t) — la|2 + N 2)(a* — AN ])a
+ %ia(xp;,lqu; — e,  (17b)

and

t -
®() = [ dt; [=Sp(by + b 2;0,) +iaXzle gl
+ic A tal. (18)

Here we introduce the notations

P ¢y
B = , €= A (19)
by b, Ca
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where b,,b,,b5 and b, are N X N matrices and ¢, and
¢, are N vectors,

For convenience we rewrite |a;f) in the form

la;8) = |0;8) exp(— tlal2 + sa— java), (20)
where
w = (AL — amacIx Al
A N @y
8= ) GRA + AEg — AR )
and the vacuum
[0;) = 7N/4 exp[ — jquq — igr;lA + &),
A0ty =0,  (22)

Coherent states |a;t) describe the most classgical
states of quadratic quantum systems in a manner simi-
lar to that for the oscillator.15:17 Stoler23 has recently
shown that all minimum uncertainty packets are equiva-
lent to coherent states. The eigenvalues a; of the invar-
iants A; are connected with the coordinates of the ini-
tial point in the phase space,where the classical motion
started.

Formula (20) shows that the eigenstates of the quadra-
tic invariants AjA ; are given by the formula

Injt) = (ny 1o omy 1) V2|05 DH, (1), (23)

where n = (ny,...,n)),n; being positive integers, and
H,(x) are Hermite polynomials of N variables.18
Green's function is obtained as

Glay,53a1,1,) = 2¥]0;2)0; 1}(detP) /2 exp(31P1),
(24)
where P is a 2N X 2N matrix
2 +w(2) + w*(1)
T \ifw(2) —w*(1)]

o (2) )] ) (242)
2 — w(2) —w*(1)

and 1 is 2N vector

1 s(2) + s*(1)
T \is(2) — is*(1))”
The N X N matrices w(2) and w(1) and the N vectors s(2)

and s(1) are defined by formulas (21) for q,,¢, and q,,¢,,
respectively. We have used the known Gaussian integral

(24b)

fexp(—ixax +bx)dx, - dxy

= (2m)¥{deta) 1/2 exp(zbatb). (25)
The derivation of the Green's function by means of co-
herent states [Gaussian integral (25)] is completely
equivalent to the calculation of the corresponding Feyn-
man path integral;but, in our opinion,the former is more
convenient.

B. Transition amplitudes and probabilities and their
generating functions

The coherent states having been constructed, all the tran-
sition amplitudes can be obtained explicitly in a straight-
forward manner. Let the Hamiltonian (1) be stationary

in the remote past and the remote future. More precise-

1y let us suppose

(26)

B{t) = const, C()=0fort=0and?¢—>®.
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Under these conditions as ! - = «© there exist initial | a;
in) and final | B; f) coherent states and initial |n;én) and
final |m;f) discrete spectra and the problem of transi-
tions between them can be solved. It must be noted that,
in general, the initial (or final) discrete spectrum |n;in)
does not coincide with the energy spectrum as in the case
of the oscillator and a charged particle in an electro-
magnetic field. For example, the free motion of 2
particle

1o
H=13p2, B:—.(O 0) 27)
and the inverse oscillator
30
H=3%p2—q?, B=(0 ..;) (28)
2

do not possess discrete energy spectra although the dis-
crete states (23) exist. The initial and final states are
constructed by means of the corresponding lowering and
raising operators in the same manner as the states |a;
ty and {n; ) are built up by means of the invariants (13).

Evaluating the corresponding Gaussian integral and tak-
ing into account the fact that | ;) is the generating func-
tion of the states |n;{},we obtain the transition ampli-
tudes (29) and (32):

B flast) = ©0;71051) exp[— 3(al2 + |8]2) + 8¢ — 3twL],

(29)
where § and S are the 2N vectors

a (p - ‘é‘i‘T(ﬁl + “1)>\I;1A
L= S={ , .
8/ —3itH{ + pAjlA

and W is a 2N X 2N matrix

w—TT  —TuyT)
W= * *,, 21/
Wy =TTy

-’r}"u1‘?
We have introduced the notations

(30

(31)

wo=(+ e, p=(QNZ)A* —apgla),
7= (AN 2)E =R A,
where the subscript f stands for “final”:
(m;fingt) =yl nylmyl-myl)1/2
x{0;710;8) Hy (W-1S),  (32)
where

M = (nl,... ,ﬂN,ml,...,mN).

The solution A(f) for constant R, as is the case when
t=0andt - «©,is given by

A(t) = ek, (33)

One can also obtain the generating function ¢(x,v) of the
transition probabilities [{m;f|n;#)|2 by computing the
Gaussian integral

olu,v) =128 [d2d,---d2dyd?, -+ d?By
x{B; flast)v*a; tup; ),

where u and v are diagonal matrices

(34)
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u = diag(u,,uy, ... ,uy), v =diaglv,,v,,... yUN)S
. (347)
|ujl = I’Uj| =1,
Formula (34) results in
@lu,v) = 228 |{0; 1|05 1) | 2(det®)"1/2 exp(;LPL),
(35)
where
2+E D Vo, 0
® = +
0 2+F/ \0  Ug,
03E*05 03D*04\ /Voz 0
x . (35))
0 agF*05/\0 Ua
wy Wy +Wg iy +5)
E =| | , D= . - -}
iy —w, —iwy + W) —w, —Wwgy
w, iw,
F=| ,  (357)
iwy —w,
(1 + v)8)
u0 v 0 1—19v)s
U= , V= , (128, (35™)
0u Ov (1 +u)s,
(1 —u)sy

Here the N X N matricesw;, ¢ =1,...,4 and the N vec-
tors s;, i = 1,2 are defined by means of the matrix W
and the vector S as

wyw 8
w=172%, s={1) (36)
W3 Wy 8y
The following relation holds
0
olu,v) = 24 |3 fIn; )| 2ug't. . cug ¥ « oL L URN.
=0 (37)

C. Some special cases of interest

We have derived the exact solution for any time-depen-
dent quadratic quantum system in terms of the solution
A(t) of the matrix differential equation (5). We know the
formal solution of this equation, namely the antichrono-
logical exponential (8). But in practice this exponential
is far from being useful for calculations,and it is of in-
terest to point out the cases when the matrix equation
(5) can be reduced to a simpler differential equation.
One can point out three particular cases when Eq.(5) is
equivalent to a very familiar equation,namely the equa-
tion of motion of the classical harmonic oscillator.

€ + Q2(f)e =0, (38)

1. N-dimensional oscillator

The simplest case is of course the case of the pure quad-
ratic Hamiltonian,i.e., of the matrix B(f) diagonal. This
is the case of the N-dimensional oscillator which was
treated in Ref. 15. The case when external forces are
present (forced oscillator) is considered in Ref. 17. The
solution of the wave equation in the case of B(¢) being
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diagonal is factorized, every factor being expressed in
terms of its function ¢; (#), =1,..., N. The functions
€, (/) in this case are simply the frequenc1es of the
osc111ator

2. General forced oscillator

There is one more case when the solution is fully fac-
torized and expressed in terms of the functions ¢, (t)
Let the symmetric matrix B(f) be of the form

a(t) b(t)
(t) =< s
B(t) c(d)
where the N X N matrices a,b,and ¢ are diagonal. The

Hamiltonian (1) takes the form of the general forced os-
cillator

(39)

N
=3 Z:) {a(tw? + b, (1)[p;s 45) + cy(thg?

+ dj(t)P,- + ej(t)qj}’ (40)

where aj, bj,cj,dj,and e; are arbitrary functions of
time.

The N non-Hermitian linear invariants of the type (14)
are

ANl = i(aj/z)l/z{e].pj +(Va)e; b, — €

- %(d]/a])ﬂ)q]} + Gj(t)3 (41)

where

5,(8) = 273/2 fot Va, [gl <e
7

1 a4,
R _
jb]- €; 2aj€f> ejedet

(417)
and € j are solutions of the equations
€ + QJ?(t)e]. =0, (42)
1d, 3 a?
Qf =a;c; + b —1+ L—L—b2—b,. (42")
aj 2 a 4 g2
f]
Condition (11) reduces to the requirement
¢
; dt
= e
= lej| xp(tfo le,-lz) (43)

Further,we give the results only,dropping the sub-
seript j =1,...,N, since all the formulas are factorized.

The coherent states are

lasty = 10;¢t) exp[—3 |@]2 + (2/a)t/2aq/e

+ (6% + de*/e)a — a2e¥/2¢]  (44)

and the vacuum |0;¢) is

105) = [e(ma)z] 112 exp[ ¢+ Za(e + Z - >qz __<i>1/26 q]

2i62 1/2 pd
¢= fo [_16— (a) 6€:|dt'

The explicit form (44) of the coherent states |a;¢) hav-
ing been obtained, the rest of the formulas [(23)-(37)]
can be easily derived. The eigenstates of the operator
ATA take the form

(45)
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) . €X/2e)n/2 q €6* + €*p

’ = 0, ’ = 3
Imf) = 1036 =En— M), # ==t TR

(46)

H,(x) being the usual Hermite polynomial. The transi-
tion amplitudes, calculated under conditions (26) (which
now read ¢ =d = 0 and a,b,and ¢ = const for { < 0 and
t - w) are

Bsflast) =<0;1105) exp[—3(la|2 + [8]2)]
x exp{(1/8)[n*a2/2 + ap*

(47)
+ (£6% — n*8)a — 6% — np*2/2]},

(msflnst) = (mim 1) 1/2€0;f |03 ) H, X1, %),  (48)
where § is given by formula (41°),
Xy =0—1nb*E*, x,=—6%¢*

and the quantities ¢ and n are defined in terms of € and
€ as
-1 expl—i e (B \Y?
t =3 exp( fot)g i€ (an)
a\ /a.\1/2 a\1/2
b)) () (e
2a aQs as

f 1/2
=73 exp(zﬂft) 3—15((19 )

b)) ) S

Al

(49)

(49")
the subscript f standing for “final.”
The following identities hold
€12 —1Inl2 =1, (50)
€ = (a;/aQ)1/2[ exp(iQ,t) — 0 exp(—iQt)].  (51)

In the final region { — « the quantities £ and 7 become
constant and can be related to the amplitudes of the re-
flected and transmitted waves for a particle which en-
counters an effective potential barrier defined by the
function £(¢). The amplitudes (47) and (48) also become
constant as ¢ — ©. If the external forces d(t) = e(f) = 0,
i.e.,d(t) = 0,formulas (47) and (48) coincide with those
of the N-dimensional oscillator,the only difference being
in the definition of the parameters ¢ and 7.

We do not reproduce the formulas for the Green's func-
tion (24) and for the generating function (35) in terms of
the function €(t), since this is trivial after |o;¢) and
{(8;f/ a3 t) have been obtained explicitly.

3. Charge in fields

The third case where we succeeded in expressing the
exact solution in terms of a function €(¢), which obeys
the classical equation (38),is that of charged particle
motion in a uniform electromagnetic field. The matrix
B(#) is of the form (39);this time a(¢) and c(¢) being di-
agonal and b(t) antidiagonal. For example,the motion of
a particle in a uniform magnetic field is described by
WM =1)
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1 0 0 tw
B 0 1 ) 0 (52)
0 tw 12 0 ’
tw 0 0 302

where wis the Lamor frequency w = e3. The solution of
the Schrddinger equation in this case is not factorized:
The two linear invariants of the type (41) depend simul~-
taneously on all the momenta and coordinates (p,,p y X,
and y for the motion in the xy plane). The details of the
solution are given in Refs. 15 and 17.

It is of interest to note that in the general case of the
matrix B(f) being crossdiagonal,i.e., a(f) and c(¢) in
(39) diagonal and 5(¢) antidiagonal, the solution is *“half”
factorized. This case will be considered elsewhere.

In the cases listed above the discrete spectra |n;t) co-
incide with the initial energy spectra if the following ini-
tial conditions are chosen for constant £:

€ = exp(iQ4), € =ife. (53)
For example, if the coefficients of the Hamiltonian (40)
are constant [and d(¢) = e(t) = 0] the following formula
holds:

i 1
H = E Qj <A;Aj +2—>.

j=1

(54)

It is worth recalling the invariance of quantum mechanics
under rotations in the coordinate space. One may use
rotations in order to reduce the matrix B(t), if possible.
to a simpler form, say to that for (40), or diagonalize it.

IH. ADIABATIC INVARIANTS

In the previous section we have constructed all the lin-
ear integrals of motions A (t) for any quadratic quan-
tum system and then used {hese invariants for obtaining
explicit formulas for the exact solution. Attractive as
these results may seem at first sight,there is,however,
one difficulty: The point is that the exact invariants are
expressed in terms of the solutions of linear differential
equations (5) or (38) but neither (5) nor (38) can be
solved exactly for every R(f) or Q(f). For constant R or
© the exact solutions of these equations are known and
thus the exact (time-dependent) invariants and the solu-
tion of the Schrédinger equation are known for station-
ary quadratic Hamiltonians. It is of interest then to look
for approximate invariants whose total changes vanish
together with the rate of change of the coefficients of the
Hamiltonian. Such approximate invariants are known as
adiabatic invariants. The exact invariants being obtained
explicitly in terms of the solutions of differential equa-
tions, the adiabatic invariants can be easily derived by
expanding the exact formulas in series in the time-de-
rivatives of the coefficients of the Hamiltonian. For this
purpose Eq.(5) or (38) is to be solved recursively,and
then this recursive solution is to be substituted in the
formulas of the exact invariants. In this paper we con-
sider the adiabatic invariants for those quadratic sys-
tems whose exact solution is expressed in terms of the
function e(t). These systems are described in Sec. IIC.
We also assume that the external forces vanish. The
adiabatic invariance of the general system (1) will be
considered elsewhere.

We let the coefficients of the Hamiltonian start varying
at ¢ = 0 and become constant again as { — «©,

In order to introduce the adiabatic parameter,we let the
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Hamiltonian depend on time through a small parameter

H =H(t), 71 =86t, (55)

Then the small ¢ corresponds to small time-derivatives
d/dt =0d/dr.

The equations for the functions ¢ J.(t) become
62¢” + Q2(0,7)e = 0, (56)

where ¢’ = de/dr.
We first consider the adiabatic invariants of the general
oscillator (40). Since the solution in this case is fully
factorized we drop the subscript j =1,2,...,N. The
“frequency” Q is

Q2 = Q3(7) + 0Q2(71) + 02Q3(7), (57)
where

Qf =ac— b2, Q}=>b2a/a—0b',

Q% = a"/2a — 3(a'/ a)2. (67)

In accordance with (43) we anticipate that

l

where |€(7,08)] can be developed as asymptotic series in

;. (7 _drt
€(“',6) = IE(T,G)IeXp<OL fo F)y (58)

le(r,8)| = le(n) o +0le(n)]y + 2. (59)
The lowest-order terms are

lelo = Q/2, |el, =—102Qp/2. (60)
the mth order reads
Ielmﬂo + |€| m—lQJZ. + I€'m_295 + l€|'rln_2 — Sy = 0,

m=3,4,.-., (61)

where s, are defined by means of the expansion

le]=3 = so(1) +0s,(7) +---. (617)
Suppose that the coefficients a,b,and ¢ of the Hamilton-
ian (40) have n continuous derivatives and that these »n
derivatives are zero in the final region ¢{ — ©. Then we
easily derive from (61) and (61a) that in the final region

l€|0=(9{))—1/29 '€|k=o$ k=1,2,...,n. (62)

By substituting (59) in formula (41) for the exact invari-
ants, one can get the adiabatic invariance series and the

linear adiabatic invariants to any order in 6. The zero-
order adiabatic invariants are

Ay = z<‘21—> 1z expl:oi jg d‘rQo(‘r):I

1 1/ B .
X |—p + —— — ivQ . 63
[«n—o" («n‘ “ )"] (6
In the final region one has,by virtue of (62),
A=A, + 0(9"*1), (64)

which means that the adiabatic invariants A, are con-
served to the (# + 1)th order in 6. The same conclusion
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can be made if one calculates the relative changes AA,,.
We give formulas in the cases of coherent states IH)
and discrete states |n;f), respectively;

(a) AA0=.§*—1—na*/a, (65)
(b) (n5t—> ©|Ayln;t— o) =0. (66)
Here the constant parameters ¢ and n are defined by

means of formulas (49) and (49’) for {— 0, Using (62)
we obtain the asymptotic series for £ and n as

E=¢§, +0(67'1), n=0("1), (67)
where
i T
Eo = exp(e— fo dr(Q, — ﬂ{,)). (68)
We observe that
Ay = o(g=*1), (69)

i.e.,the adiabatic invariants A, are conserved to the
(n + 1)th order in 6.

It is of interest to consider the evolution of the quadra-
tic adiabatic invariant

N

Iy=% <A{,J.A0J + ;-) (70)

i=1

which is analogous to the classical adiabatic invariant
E/$. In the states |n;t) one has

N N a
AIO=jZi2|nj|2(2nj+l)<Zi (Zn].+1)) . (71)
- =

By virtue of (67) we get that I, conserves to the
2(» + 1)th order.

By substituting the asymptotic series (59) in formulas
(44)—(48) of the exact solution one can obtain an approxi-
mate solution to any desired order in 6,in particular,
one can obtain the adiabatic Green's function. The tran-
sition amplitudes (47) and (48) can be easily expanded in
tand 71, and by using (67) one can obtain the adiabatic
transition amplitudes. We give the expansion of the
energy distribution |{(m;f|n;£)| 2 in the case,where
external forces d(t) = e(t) =0 (56 = 0 in formulas of the
transitions):

(Gm3flmst)] 2 = I GRS 2%, (nP)1 ]2

) (6
n(l +n R
x[1_<1+_11(._m.1_)>_21+...:', (72)

slmnlz = ff [1=FF o e 08, 4], a2)

where

Rj = |le/€]'|2;
)

1
ng = ma.x(nj,mj),

kj=%(|nj"'mj|)a (73)

) .
ny = mm(nj,m].).

Formulas (72) and (72’) show the validity of the adiaba-
tic invariance to the 2(n + 1)the order in 6. The para-
meter R may be treated as a reflection coefficient of a
particle from the one-dimensional effective potential,
defined by Q(¢)%15. Thus the reflection coefficient is an
amount of 2(n + 1)th order in the adiabatic parameter 4.

The above treatment of the N-dimensional general os-
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cillator certainly holds for the usual N-dimensional os-
cillator, since the latter is a particular case of (40)
(a=1,B=d=e =0).

In the case of a charged particle in electromagnetic
field we have to consider, instead of (56),the equation
62¢” + Q2(7)e =0, (74)
By considering Eq. (74) in a manner similar to that for
(56), one can obtain the same adiabatic results concern-
ing the linear and quadratic adiabatic invariants and the
distribution over energy. [The asymptotic expansion of
the solution €(7,8) of Eq.(74) contains only even powers
of 6.13] In terms of the corresponding £ and n all for-
mulas are given in Ref.15. We will mention here the
conservation of the magnetic moment y to the 2(n + 1)th
order in #. Indeed,the magnetic moment p can be ex-
pressed in terms of the linear adiabatic invariants as
u=(e/MALA,, (75)
and we have seen that quadratic adiabatic invariants
A} A, are constant to the 2(n + 1) the order in 6. For-
mula (75) follows from the classical relation ¢ =
(27M/ e) i1 between the magnetic moment and the magnet-
ic flux ¢ through the circular path. The magnetic flux
¢ is proportional to AJA,,.

Adiabatic aspects of the solution of Eq.(74) were treated
by Kulsrud13 and Chandrasekhar.24 In this paper we ap-
plied Kulsrud's method to Eq.(56). Chandrasekhar’s
method was recently25 shown to be equivalent to that of
Kulsrud.

The quantum systems considered above have finitely (the
N -dimensional oscillator) and infinitely (the charge in
an electromagnetic field) degenerate energy spectra. If
the Hamiltonians depend analytically on the time, then
adiabatic invariants are constant to all orders in the
adiabatic parameter 9.

IV. CONCLUDING REMARKS

In conclusion we note that by means of N linear invari-
ants A, one can construct the Lie algebra of U(N, 1) and
establish that the dynamical symmetry of any quadratic
system with N degrees of freedom can be described by
the noncompact group U(N,1). Since the commutation re-
lations are the same both for the exact and the adiabatic
invariants, one may use the latter for the contraction of
U(N,1). Thus the symmetry properties of the adiabatic
solution coincide with those of the exact solution.

The connection of coherent states with noncompact
groups was studied recently by Barut and Girardello.26
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This connection makes obvious the possibility of using
noncompact groups for classical mechanics. Coherent
states exist for nonquadratic quantum systems too. 1t is
of interest to consider the quasiclassical approximation
(i.e.,large quantum numbers) of the exact formulas,
obtained in this paper.

The results of this paper can be generalized to quadratic
quantum systems with an infinite number of degrees of
freedom (N — «©).
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A new expression for the pressure in terms of irreducible distribution functions is given. A derivation
for both the classical and quantum mechanical case and a brief discussion of the limits of validity of

the formula are given.

1. INTRODUCTION

In statistical mechanics the pressure of a simple fluid
in equilibrium is usually obtained by calculating the
partition function and taking its logarithmic derivative
with respect to the volume,. In this paper we shall ex-
press the pressure in a different way (in terms of
irreducible distribution functions, to be defined below).
The resulting expression [formula (2. 8)], which we
thought to be new, turned out to have been, implicitly at
least, contained in a paper by Green.l We owe this in-
formation to the referee, and we are grateful to him for
having drawn our attention to Green's interesting paper.

Although our derivation is closely related to that of
Green's, it seems to be somewhat more direct and
streamlined.

Also while we do not see any immediate applications,
the result is simple and could perhaps be of interest
for formal considerations,

We begin our discussion by finding an expression for
the probability P(2) that, in the thermodynamic limit,
a macroscopic region & (contained in V) is free of
particle. By a “macroscopic” volume we mean one the
dimensions of which are very much larger than any
characteristic length associated with the fluid (size of
molecules, intermolecular distance, correlation length,
etc., ete.). Let the system have N particles and volume
V. Call Py y(ry,...,ryMdr,. . .dry the probability that a
particle is indr; around r,,...,indry around ry. Then,
before we take the thermodynamic limit, the probability
P, (&) of finding no particles inQ is

PN.V(Q) = f- . -fPN‘V(rl, e ,rN)j];[l[l — Hn(l})]
Xdrys--dry.  {1.1)
Here 6,(r) is the characteristic function of Q,i.e.,
G{r)=1, r inQ,
1.2
=0, r notinf. 2
Multiplying out the product in (1.1), we obtain
Pyy@)=1—A +A4;,~A; ++-, (1.3)

A =N fn dr, fv dry- -« dryPy 4Ty, ... Ty)

NNV

-1
4= _ZT'—) fa drydr, fv drge - -dryBy y(ry, ..., 1y),

. (1.4)
fam

(This is the usual inclusion~exclusion lemma of prob-

ability theory.)

Al
(N—z)fzs
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+eedr, fp‘drl+1 RERE: % SV ¢ PR M

The !~-particle distribution function is defined, as usual,?

by
NI
..____,._fvd

b SN SPICRY) o
=1 1 %12 N

26 TS A

X Py ey, oesry). (1.5)

The #, have 2 thermodynamic limit 7, and this is now
assumed to be taken. Using (1. 5) and (1.4), we have

P@)=1- ’3’ f dryny (1) * 3 f drydr, ig(ry, 1) — 6)

We now introduce the irreducible l-particle distribution
Sunctions X, {cluster functions) as follows3:
(1) = x3(ry),
y(ry, ) = X0y, ) + X {r)Xa (),
n4(ry, Ty, Tg) = X3(ry, T, 13) + X110 )Xa(np, T5)
+ X1 ()X {1y, T3) + Xy (rp)Xa(ry, 1)
+ X1 {0y )X (5 )Xs(rs), (1.7
and so on.

The relationship between the 7, and the ¥, may be ex-
pressed in terms of the well~-known identity*

(-]
i ~
1+ 12312?*&drl"'dr’nl(rl""’rl}
=exp(§2"!‘ ‘];;drl.'.drlrl(rl""’rl))- (1.8)

In (1.8), ¢ is arbitrary, but it assumed that the series
involved in (1.8) converge. Choosing ¢t = — 1, the left-
hand side of (1. 8) becomes the right-hand side of (1. 6),
so that we finally have

X (1)
P@) = exp(g ¢ “1) fn Ty, oo, p)dey - -drl) .

) (1.9)
2. CLASSICAL CASE
In the case of classical statistical mechanics
By ylry,...,1y) is given by
PN,V(rp vy rN) = exP[" B¢N(r1y crey rN)]/

N fv exp(— B¢, )dry - - -dr,, (2.1)

where g = 1/kT and ¢,(r,...,ry) is the potential of
the intermolecular forces. Therefore,

Byy@) = [ exp(— Boy)dry - -dry/
. fv exp(— B¢, )dr,- - -dr,. (2.2)
Copyright © 1973 by the American Institute of Physics 583
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Now in classical statistics the partition function is
given by

1

Zy w7 AN [, expl— By)dr; -« dry = expl— BFy(V)],
(2.3)

where x = /V2zmET and F,,(V) is the Helmholz free
energy for N particles in the domain V. Therefore,
since @ is a macroscopic domain, so is V-, and we
must have

By, ,(Q) = " BNy (v-2] (2.4)
Now we are going to the thermodynamic limit, so we
may assume << V. Expanding and using the usual
formula for the pressure

9F, (V)
p=— (X 2.
(2,
we have at once
P{Q) = e828, {2.6)
Comparing (2. 6) with (1. 9), we see that
= o)
. 1)1 .
B = ;Z=; sz)t—_ fn XLy oo esr)dry s odr,. (2.7)

Since © is a macroscopic volume, arbitrarily large, we
may also write

1)z+1

(2.8)

Bp = lim — 1 E sz(rh--

dm o 2 IS 75 RRRY:) R
This is the originally mentioned new formula for the
pressure. It depends only on the assumption of the con-
vergence of the series on the right-hand side of (2. 8).

Although the above argument is both appealing and con-
vincing, it is not entirely rigorous. Hidden somewhat in
the derivation is the fact that we are dealing with a
double limit

lim lim (1/Q)logFy (@)

so that as V = © the volume & cannot be really con-
sidered to be macroscopic.

In the Appendix we skeich a proof valid, however, only
for low densities.

3. QUANTUM MECHANICAL CASE

For quantum statistical mechanics there is no formula
for Py ,(ry,...,Ty) of the same simplicity as (2. 1).

PN depends on the wavefunctions, which in turn depend
in deta1l on the domain V. We may, however, proceed as
follows. Using the grand partition function, we have

NV
1 LvQIWiN'V'ZdrI. . -drN
mevp et
N i

where p is the chemical potential and ¢ ¥ and EMV are
the normalized wavefunctions and energy eigenvalues

of N particles in the domain V, interacting via the
potential ¢(r;,...,ry). N is the mean number of par-
ticles, determined from p and the grand partition func-
tion in the usual way:

— gV
N+ (i log (E GBEN -BE] )) .
. N T,V
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Py (@) =‘IL_V) eB”NE e °F
2

(3.1)

(3.2)

DefineS the “Slater sum”

N,V
Wy p(By, .00, Ty) = ND3N T P51 |ypv)2 (3.3
3
so that
1
— BuN cee §
By, Q) %}e W e S o Wy drye - dry
: BuN ...dry. .
:./é}e u INT] fv Wy, dry .. .dry (3.4)

We now express W, ,, in terms of the cluster functions®

Wy, viny) = T, ylny),
Wo v(ry, 1) = U (0, 1) + Uy (1) Tp (1),

Wy 1y, T, 13) = Us {1y, 1, 15) + U (1)U (1, T5)
+ Uy ()0, p(xy, 15) + Uy 3 (r3)Us (v, T)

+ Uy, p(5) 0y (1)U, (x3) (3.5)
and so forth., Using (3. 5), one easily sees?
1
i fV Wy p(Ey, o oo, Ty)dry - - odry
B T\ XUl O CY0)
m=0,1,.0,00 My} my! my!
[ <]
x...(Z}mll=N), (3.6)
1
where
1
a,(V)= = fv dry - dnl, p(ry, ..., 1) (3.7
The identical combinatorial argument gives
1
v fv Wy (Tyy o oo, Ty« « odry,
_ [V, 0™ [a(7, @]
—ml=0,1,2.....oo ml! o my !
o0
x(zly lmlzN), (3.8)
where
a(V,Q) = E% [, drydny, (. m). (3.9)

Putting (3. 6) and (3. 8) into (3. 4), one has

o0 my V,Q) my  _2my V,0 my
B, Q)= 2 2 la 17 2 a,9)] /

m=0 my ! my!
© zml[al(v)]ml szz[az(v)]ma
D — AT
mi=0 ml H my !
= exp(i [(V,9) — a,(v)}zz), (3.10)
1=1
where the fugacity z is defined by
e=e/s (3.11)

We shall now express the g, in terms of the cluster
integrals b, which are defined as the thermodynamic
limit of

bV) = (3.12)

1
Vi1 f l V(r17 ceey rl)dl"l drl N
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This limit may be written (because of the cluster pro-
perty® of the U, ;)

1

b, = m fa.ll epace dry. - -drlU, (1, T, ..., 7). (3.13)
Therefore for large V, V — Q

a(V) = Vb, a(V—Q)3, (3.14)

and, using (3. 10) and the standard expression for the
pressure,’

P@) = exp<— Q ;Z:}lglz’> = exp(— BpR). (3.15)

Finally, comparison of (3.15) and (2. 6) shows that once
again we obtain the formula (2. 8) for the pressure.

The derivation in this case apparently assumes more
than in the classical case; we require the convergence
of the fugacity expression for the pressure in terms of
the cluster integrals. There is no reason to expect this
if a phase transition takes place (for example, gas—
liquid or Einstein—Bose). Indeed, it is possible to calcu-
late the right-hand side of (2. 8) for an ideal Bose-
Einstein gas. The result is (2. 8) above the transition
temperature, while below the transition temperature8

1 A (DR
&#%5 lg _—'—l!——‘/[;Xl(rl""’rl)drl drl

=Bp, +p—p,, (3.16)
where p is the density N/V and p, is the density at the
critical temperature. Therefore (2. 8) is not true in
general. We suspect, however, that it might be valid in
a single phase region of the fluid.

APPENDIX

The cluster functions x,(r;, ..., r;p) depend, of course,
on the density p (= 1/v, where v is the specific volume),
and, as is well known,

|-

0 -
=p =13(rp) = zz-i Ib,z! (A1)

relates density to fugacity, where we also have the
familiar formula for the pressure

ZPE =;Z=>15zzl- (A2)

We can now express the x,(ry, ..., r,;p) as functions of
fugacity z, and, following Uhlenbeck and Ford?, we de-
fine the quantities b,(r, ..., r,) as coefficients in the
power series expansion of Y, (ry, ..., ;0):

o0
Xs(Tys ooy g3 P) =ZZ)bl(r1,...,rs)zl. (A3)
=5
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That such an expansion is valid at least for sufficiently
small z requires, of course, proof. While we are un-
able to supply a precise reference to such a proof, we
have no doubt that the present status of the rigorous
foundations of classical statistical mechanics (for
equilibrium) is such that under suitable restrictions on
the interaction potential the expansion can be indeed
justified.

We now use the formula
1 -
l! 5

.1 y
lim _f ...j‘; bl(rl’...’rs)drl..-drs =(l—_———sT!—-

Q-0 Q “Q !

(A4)

(see Uhlenbeck and Ford2?) and hence (allowing for an
interchange of the limiting processes)

., T,;p)dr; "+ dr,

n=0 n!
_pewR o g,
—ngl n! I=n (l——n)' blz
=3 (= 1) Z)( >blzl

n=1 i=n \N

© _ l l ko
:Z}b,zéz(—l)”<)=—25zl=~£—- (a5)
b=t n=l n =1t kT

Use has been made of the fact that

Bew()

Formally the proof is also applicable to the quantum
mechanical case provided (A4) can be justified (Uhlen-
beck and Ford prove it only in the classical case) as
well as the expansion (A3).

*Supported in part by the National Science Foundation.
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New inequalities for certain Green’s functions are given. They may be interpreted physically in many
ways, for example, as applying to the quantum mechanical motion of a particle in a potential or to
diffusion in the presence of absorbers. These inequalities involve a symmetrization process very
closely related to Steiner symmetrization used in the theory of isoperimetric inequalities. The usual
geometrical and physical isoperimetric inequalities are very special cases of our general inequality
(3.9), arising when the potential is taken to be a characteristic function of a bounded domain and the
“time” in the Green's function is allowed to get very large or very small.

1. INTRODUCTION

The classical isoperimetric inequality (known already
to the Greeks) states that, of all curves with given peri-
meter, the circle has the largest area. Similarly, of all
solids with a given surface area, the sphere has the
largest volume. To these (and other) purely geometri-
cal “isoperimetric” inequalities, some of a more physi-
cal nature have been added.l For example, Lord Ray-
leigh conjectured (in 1877) that, of all membranes with
a given area and fixed boundary, the circular one has
the minimum lowest natural frequency. This was not
fully proved for about 50 years. Again, Poincaré (1903)
stated and gave a partial proof of the conjecture that of
all solids with a given volume the sphere has the mini-
mum electrostatic capacity. {This was not fully proved
until 1930, by G, Szegb.)

Now the circle is the most symmetrical of all domains
in the plane. J.Steiner (in 1836) invented a geometric
operation (which we shall call “Steiner symmetriza-
tion”) which increases the symmetry of any domain. In
the plane, it preserves area and does not increase the
length of the boundary of a domain. We shall describe
this process in detail below, but mention at this point
that Steiner symmetrization never increases the lowest
natural frequency of a membrane or the electrostatic
capacity of a solid. (These and other similar results
were first proved! by P6lya and Szegd.) Such results
represent a very considerable generalization of the
classic isoperimetric inequalities.

In this paper we shall be concerned with a still greater
generalization of these ideas. There are essentially

two new elements in this generalization. The first is
that instead of just a quantity like the lowest natural
frequency of a membrane, the entire Green's function

is involved. The second is that the inequalities involve
a function rather than a domain, the domain type of
results arising when the function involved is specialized
to a characteristic function of the domain. As an exam-
ple of what our results are like, consider a particle (in
two dimensions) interacting with a potential ¢(x,y). I
the potential approaches infinity at infinity, the allowed
energy states will be discrete, with energies €, €,, €5,
-++. (We use quantum mechanical language only for con-
venience; we are really considering the spectra of cer-
tain differential operators.) Let us define the “parti-
tion function” Z(f) by (t is a real positive parameter)

zm==§e“9. (1.1)
=0

(It is a certain integral over the Green's function for the
system.) Let the potential ¢{x,y) be replaced by a
“Steiner symmetrized” potential ¢*(x,y ), the exact de-
finition of which yill be given later. Call the corres~
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ponding energy levels €*, and the corresponding parti-
tion function Z*(f). Then, for this case, our inequality
takes the form

Z{t) = Z*({1). {1.2)
Now suppose ¢{x,y) is taken to be zero inside a certain
domain D and infinite outside D. The “Steiner symmet-
rized” potential ¢*(x,y) will be zero in a domain D* and
infinite outside D*, and in fact D* will be the Steiner
symmetrization of the domain D. Clearly, apart from
constants all of which may be absorbed into ¢, the € are
the squares of the natural frequencies of a uniform
membrane having the shape of D with fixed boundary.
By letting ¢ approach infinity, only the €, contributes
and (1.2) may be written

oot < g

’

or
€ = €.

This is just Pélya and Szegd's generalization of Ray~
leigh's conjecture. On the other hand, when ¢ is small,
the leading terms of Z(f) are given by2 (in suitable
units)

ﬂﬂ=QW)_Lw) 1 ,
ont 4 (2mt)V/2

(1.3)

(1.4)

where $2(D) is the area of the domain D and L{D) is the
length of its boundary. Similarly

QW% _LOY 1

Z¥(t) = ont . o)z . (1.5)
Since (D) = Q(D*), (1.2) becomes
L(D) = L(D¥), (1.6)

which is just Steiner's generalization of the classic iso~
perimetric inequality.

That is, the usual Steiner type of isoperimetric inequa-
lities are just extreme specializations of (1.2).

The outline of this paper is as follows. In Sec. 2, the
basic method is outlined and our general inequality is
given for one-dimensional systems. (Unlike the situa-
tion for the usual isoperimetric inequalities, there are
nontrivial results in one dimension.) Some limiting
cases (large and small “time”) are discussed. In Sec.
3, the results are generalized to higher dimensionality,
and our basic result is the inequality (3.9). This is
essentially an extension of the results of Pélya and
Szegd on Steiner symmetrization of domains to certain

Copyright © 1973 by the American Institute of Physics 586
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differential operators. (We do not discuss in this paper
similar extensions of other symmetrization processes
such as circular and spherical symmetrization,! which
we shall report on elsewhere.) In Appendix A, some
very simple illustrative examples are given. Finally,
in Appendix B, a further kind of generalization is indi-
cated in a very simple case.

2. ONE DIMENSION

In this paper we shall use the language of quantum
mechanics as a natural and convenient physical setting
for our results, though they can just as well be express-
ed in terms of heat conduction, diffusion or the formal
properties of certain differential operators. We begin
the discussion by considering a one-dimensional par-
ticle of unit mass interacting with a potential ¢(x) which
approaches infinity as |x| approaches infinity. Such a
particle has a Hamiltonian operator3

+ ¢lx) (2.1)

(units such that % = 1) and (normalized) characteristic
functions and values given by

Hy,x) = €Y;(x). (2.2)
The Green's function G(x,t|x’) is defined by

HG(x,t|x") + ﬂ";"‘—‘—”) =0 (t>0) (2.3)
with

grgG(x,tIx’) = 6(x —x’), (2.4)

6(x) being the usual Dirac delta function. There are
many formal representations of the Green's function,
the most familiar of which is
Glx,tlx’) =2 € 9 Yy x). (2.5)
J

Now G may also be written as a path (or Wiener)
integral4

Gix,tlx") = }‘LIB) f_: Ax odx 5+« ~dx,_y
X P(x — xp)i€ °n ) P(x, — xs)e'A"%‘”)
XeeoPlx, 4 — x7)e 2n® D

where
A, =t/ln,—1),

Let us consider the quantity

(2.6)

P(x) = (2ma,)1/2 e, (2.7)

I= f_: dxdx’ Glx,t|x") T (x' — x)p(x)

. 0 ~A,, ®(x5)
=lim [ dxdr,. - dx, Ply — g)e*n®%

ces P(x,., — xn)e'A"¢ 6D T (x, — %, Jy(xy), (2.8)
where I',y are real nonnegative quantities. We shall
make use of the folowing inequality, which is the crux
of our entire discussion. Let H (O(x),F (4)(x) be real
valued. nonnegative functions of x which go to zero as

|x| approaches infinity sufficiently rapidly so that ail
the following integrals exist. Define [H ((x)]* as the
symmetrically decreasing rearvrangementS of HU)Xx).
Then

00
f;wdxl. cedx HO(x, — x5 HD(x, — x3)...
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X H®(x, — x,)F O(x,)F x,)...Fx )
= [T dxy. . dr[HOW, — xp)]F. ..

X [HO)x, — x,)[F Wx,)]*. . . [F®(x )]*. (2.9)
This theorem exists in the literature® forn = 2. A
formal proof for arbitrary n (by R. Friedberg and my-
self) has been constructed, and will be published else-
where. Intuitively, however, the theorem has an almost
trivial interpretation. Let the real axis be uniformly
covered with particles at concentration C. Further, let
H®(x; — x,)dx, be the probability that a particle ini-
tially at x, finds itself after one interval of time between
%5 and x5 + dx,. Similarly,let H®) represent the same
probability, the “jump” taking place during the second
interval of time, etc., etc. Let F @(x,) be the probability
that a particle at x, survives absorption before it jumps
to x4 (in the second interval), F (3Xx ;) be the probability
that a particle at x, survives absorption before it jumps
to x4 (in the third interval), etc.,etc. Then

o0
UCdxy) [ _HD(x, — x,)F @(x,)H D(x, — x5)F Oxy). ..
X H®x, — %) )F 0 D(x,)dx,...dx,

represents the number of particles which start in the
interval dx, around x, and end after n» jumps within the
(very small) interval [ around x,. The total number of
particles returning to within / of this starting point (I
very small) is therefore [defining F®#*1)(x) as F ((x)]

Cl_[:dxl. cdx HD(x, —x,5). ..
XH®(x — x1)F D(x,). .. FO)x,),

which is proportional to the left-hand side of (2.9). Now
it is intuitively obvious why (2. 9) is valid: The right-
hand side of (2.9) is proportional to the same proba-
bility with the absorbing material rearranged to in-.
crease as we go away from the origin, and the jumping
probabilities rearranged to favor short jumps. That is,
for the particles which survive anyway (those near the
origin), the short jumps are favored, tending to keep
them in the region of high survival, so that in the end
more survive.

Accepting (2.9), we apply it to (2. 8). Since P(x) is
already a symmetrically decreasing function,

[P@)}* = P(x). (2.10)
Further,if forj =2,...,n

FU)x) = ¢ %%, (2.11)
then

[F D) ¥ = ™o X2 0N (2.12)
where *[¢(x)] is the symmetrically increasing re-
arrangement of ¢(x).7 Therefore, (2.9) tells us

o
f_ooG(x, tlx )T’ — x)y(x)dxdx’
= [G*(x, tlx)[Tx’ — )y rdxdx’,  (2.13)

where G*(x,t|x') is the Green's function for the “sym-
metrized” Hamiltonian

H* = %:722 + o). (2.14)
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Note added in proof: We should mention that (2.9)
may be used to obtain more general inequalities than
(2.13). For example, we have at once

Jetx, b 12T (6] — %)y (%2)Glxg, 151 25) T (85 — 23)yp(x3)
X o Gy, 1% (X0 — %1 )y %)

< [G*THIG* Ty} - G*Thy%

mY ms

(2.139)

where the arguments of the various functions in the
second line are the same as the corresponding ones in
the first line. We have found no immediate applications
for these more complex inequalities, and have therefore
left them out in the discussions of this paper.

(A method of obtaining the various rearranged functions,
along with some elementary examples, is found in
Appendix A.) The inequality (2.13) is the basic result

of this section. Some special cases however are of par-
ticular interest:

(a) Letting I'(x’ — x) approach the Dirac § function
8(x’ — x) and y(x) approach unity, we obtain (since
both of these are symmetric and not increasing)

[o 6t < [orx, tixdx. (2.15)

Using (2. 5), we see that this becomes an inequality for
the partition function, i.e.,

*

zjje'fi’ = :[,e‘e:‘ t (2.16)
where

H*zp]f“ = ej*tl/}* (2.17)

define the normalized characteristic functions 4/’; and
characteristic values € ;" of H*.

(b) Letting both I" and y approach unity, we obtain
[260, tlxdndz’ = [ G*x, t]x")dxda. (2.18)

Again, by using (2. 5), this becomes

2;,e'€f‘ (f_:, \//j(x)dx)z = %}e'e?‘ (f_:zp;(x)dx)z. (2.19)

(¢) By letting I" and y both approach 6 functions,

Tx) = 6(x — a),
[T * = 8(x),

y(x) = 8(x — b),
[ye)]* = o(x),

(2.13) becomes

G(b,tla + b) = G*(0,¢|0)
or

Glx,t|x') = G*(0,t]0) (2.20)
since a and b are arbitrary. The inequality (2. 20) gives
a general upper bound on the Green's function at arbit-
rary x,x’ in terms of the Green's function for the
“symmetrized” Hamiltonian at the origin.

We conclude this section with a discussion of two limit-
ing cases:

(1) t very large: In this case the essential result comes
from (2.16) which tells us

(2.21)
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That is, our inequality provides a lower bound on the
lowest eigenvalue of H. This may prove of use since
the usual variational principle (Rayleigh-Ritz principle)
provides a convenient upper bound, and then (2.21)
enables us to bracket ;.

(2) t very small: For this case the leading term of the
Green's function is trivially obtained by the method of
Kac.4 The result is

e (x-xN¥2¢
Glx,tlx!) = =——r

-tP(x)
(2mt)L/2 :

(2.22)

[¢(x) may be replaced by ¢(x’) in this expression, since
first factor is essentially &(x — x') for small ¢.]
Similarly,

-(x=x1) 2/2t

= t*{9(2]
(zﬂt)l/z ’

G*(x,tlx’) = (2.23)

By using (2.22) and (2. 23),(2.13) becomes

f_ :dxdx' ¢

(2”)1/2

-(x-2)2/2¢
Lx’ — x)y(x)

0 ~(x-xN%2t -
< [ dxdsr & & MO rrer — xhy*(a).

———(21")1/2 (2.24)

If T, I'*,y,y* are smooth enough, (2. 24) becomes

) [ dx ¢ Py = T30) [ ax & Pyx(a).
(2.25)

The result is an immediate consequence of a well-known
rearrangement inequality,8

S oleyywiax < . " o (xhy*(x)dx (2. 26)

since I'*(0) = I'(0). [I'*(0) being the maximum value of
the function I'(x).]

If we wish to calculate the “partition function” from
(2.15), (2.22) and (2. 23) are inadequate. They become

Gz, tlx) = e~ ***Y2mn /3, (2.227)

G*(x, tlx) =e Y (2n)1/2, (2.23")
which, because of the equimeasurability of ¢ and *[¢],
reduce (2.15) to a trivial equality. Again,the next term
of G(x, t|x) is easily obtained by the method of Kac# (it

is essentially the first quantum correction to the “classi-
cal” partition function obtained by Wigner and Kirkwood),
and yields

.
(211t)1/2

] _ _ﬁ ] d (x) 2 _ :,
x [f_wdx et® 24f_wdx<de ) e"t®l.  (2.27)

I 6, tlxx =

Making use of (2.15), we have

2 2
fwdx(gg’> e~t® = foodx <M) e~t*9],
-o0 X -0

(2.28)
dx

It is not difficult to prove this inequality directly for
arbitrary nonnegative £.
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3. HIGHER DIMENSIONS

We shall now consider a particle moving in a three-
dimensional Euclidian space [a point of which is speci-
fied by r = (x,¥, 2)], under the influence of a potential
¢(r). (Everything we say in this section applies to the
case of a d-dimensional Euclidian space with only trivial
changes.) It is assumed that ¢(r) goes to infinity as

|r| does. The Hamiltonian is

H=—3V2 + ¢(r), (3.1)
where
02 92 32
V2=—e + — + —. (3.2)
9x2  3y2 922
Again, the Green's function G(r, t| r’) is defined by
3G(r, tlr’)
HG(r, t|r’) +—-—(—’—=0 (t>0) (3.3)
and
lim G(r, t|r’) = 6(r — r’). (3.4)

>0
The Wiener integral representation of the Green's func-
tion is

G(r,tlr") = lim [dr,---dr, _ P(r— rz)e'Aﬂ‘p("z)

n—c0
X Blr, —rg)e 2n®Cs). . PBlr  — ) t*®) (3.5)
where
Blr) = e 722 /(2ma,)3/2 (3.6)

and all integrals on any coordinate are to be taken from
— o to + © unless otherwise stated.

Introducing nonnegative functions I'(r),y(r), we have
fe,tlr) T’ — r)y(r)drdr’
= grgfdrl. .dr B(r, — ry)e 4D,
x Ihi"(r,,_1 — r,,)e—A"q)c"")I‘(r,l — 1 )y(ry). 3.7
Now suppose we consider an arbitrary direction in space,
and choose one of the coordinates (say z) to be along it.
By writing r = (p, z), (3.7) becomes
JG(x, tir)Tx’ — r)y(r)drdr’
= },ig{,fdpl' . 'dpnfdzf --dz,
X ﬁ(pl —py,2, — zz)e-A"(h’z’)' ..
X f’l(pn_l — Py By z“) e'Aﬁ‘o(Pn,zn)
X TP, —P1,2, — 210y(P1,2y).
Holding p,, ...,p, fixed, we can apply (2.9) to the z
integrations. Exactly the same reasoning as in the pre-

vious section now leads to the fundamental result of this
paper

. (8.8)

fG(r, tr)I(r’ — r)y(r)drdr’
= [Gx(x,tlr")[D(x’ — 1) [X[y(x)]idrdr’, (3.9)

where [T(r)]%, [y(r)]* are the symmetrically decveasing
rearrangements of I" and y viewed as functions of z
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(x,y held fixed). G*(r, t|r’) is the Green's function for
the Hamiltonian

[H}:=—3v2 + o), (3.10)

where }[¢(r)] is the symmetrically incveasing veavvange-
ment of ¢(r) viewed as a function of z for fixed x,y.
Specializing I" and y as in the previous section, we ob-
tain the interesting special cases

(@) %}e'eft =D %, (3.11)
J

®) Te [y, mdr)2 = e ([[y,;r)]5dr)2, (3.12)
7 7

() G(r,tlr") = GX0,tl0), (3.13)
where
HW,1E = ;13 [v,]; (3.14)

and the wavefunctions are chosen normalized.

The relationship of (3. 9) to the process of “Steiner
symmetrization” may be seen as follows. Choose the
potential ¢(r) to be zero if r is a point of some bounded
domain D and infinite if it is not. Then the characteristic
values and functions of H are given by

—1v2y, =¢,¥, (rinD), (3.15)

Y; =0 (rnotinD) (3.16)
and

Y, =0 (r on the boundary of D). 3.17)

What is the potential }[¢(r)]? It must satisfy the con-
dition5 (for “arbitrary” W such that the integral con-
verges)

[owe@dz = [ w(zlo@)uz (3.18)

and be a nondecreasing function of |z|. For conver-
gence we must assume W(w) is zero and W(0) finite.
Then the left-hand side of (3.18) is just W(0)l(x,y),
where I(x,y) is the length of the intersection of a line
parallel to the z axis and passing through the point
(x,y,0),with the domain D. Let us define a domain
D by the following conditions:

(a) D?¥is symmetric with respect to the plane z = 0.
z

(b) Any straight line perpendicular to the plane z = 0
which intersects one of the domains D and D} also
intersects the other, and these intersections have
the same length.

(c) The intersection with D} consists of just one line
segment (the intersection with D could consist of
several segments), which, because of (a), is bisected
by the plane z = 0.

Now choosing X[¢(r)] to be zero if r is in the interior of
D7 and infinite otherwise, we see at once that (3.18) is
satisfied [because of (b)] and that it is a symmetric
increasing function of z because of (a) and (c). Thus the
characteristic value problem for [H]} is

—3v2 Wl = [ej]:[\l/j]: {(r in D¥), (3.19)

[‘P,]: =0 (rnotinD}), (3.20)
and

[¥;]; =0 (r on the boundary of D). (3.21)
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The domain D} satisfies exactly the definition? for the
Steiner symmetrization of the domain D with respect to
a plane z = 0. Choosing to apply this to (3.11) for very
large ¢, we obtain the result of P6lya and Szegtl (men-
tioned in the introduction for the two-dimensional case)
that Steiner symmetrization decreases the lowest natural
frequency of a vibrating fluid confined to a domain D,
with Dirichlet boundary conditions on the boundary of D.
The inequality (3.9) may be thought of as a generaliza-
tion of their results.

We also mention that if we integrate (3.12) over ¢ from
zero to infinity and consider the two-dimensional case,
the left-hand side of (3.12) becomes (apart from a fac-
tor of 4) the torsional rigidity of the domain D (P6lya
and Szeg0,Ref.1,p. 106) and the right-hand side becomes
the torsional rigidity of the Steiner symmetrized domain.
Therefore, we have shown that Steiner symmetrization
increases the torsional rigidity, a result first proved by
Pélya in 1948.

The symmetrization process leading to (3.9) may be
applied again to some other direction (rather than the
z direction). By continuing this procedure with respect
to “all possible directions”10 we will finally obtain

fG(r, tlr)T(x’ — r)y(x)drdr’

= [GXr, tIr\T%(r — r'lyr(r)drdr’, (3.22)

where ['*(r) and y*(r) are rearrangements of I" and y
which are nonincreasing functions of |r| alone.
G*(r,t|r’') is the Green's function for the Hamiltonian
[H)x =— 392 + #o(r)], (3.23)
where *[4(r)] is the rearrangement of ¢(r) which is a
nondecreasing function of |r| alone. Therefore,upper
bounds of the form (3. 22) may be obtained by solving a
problem with spherical symmetry. (A method for finding
these spherically symmetric rearrangements along with
some elementary examples is found in Appendix A.)

Finally, we conclude by discussing two limiting cases:

(1) t very large: Once more the essential result comes
from (3.11), which tells us

leo]t = [eolt = €0, (3.24)
Again providing, in principle, lower bounds for the ground
state energy.ll

(2) ¢t very small: Just as in the one-dimensional case
the leading and first correction term to the partition
function may be written

fG(r, tirydr
- (let)S'/? (f are-tow L2 f dr[v¢(r)]2e-w(r>>,
(3.25)
which with (3. 11) yields
[ar(ve)zet? = [dr[v*(p)|2e i, (3.26)

1t is not difficult to prove this inequality directly for all
positive ¢{. Comparing these results with those men-
tioned for the vibrations of a membrane [(1.4),(1.5),
(1.8)], we see that the inequality (3.26) is the analog (for
a smooth potential) of the isoperimetric inequality stating
that the Steiner symmetrization decreases the surface
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area, while leaving the volume unchanged {the unchanged
volume corresponding to the fact that ¢ and *(¢) are
equimeasurable].
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APPENDIX A

In this appendix, pedagogic in intent, we indicate how

the various rearrangements of the functions required in
this paper may be carried out,and give some elementary
examples.

1. Symmetrically decreasing rearrangements

Suppose f(x) is a nonnegative function which approaches
zero as |x| approaches infinity, and we want its sym-
metrically decreasing rearrangement f*(x). Instead of
the general condition (arbitrary W) mentioned in Foot-
note 5, it is sufficient to require, for equimeasurability,
that for arbitrary realy > 0

o0 0
S dx 0(f) —y) = [__dx 87 *(x) — ) (A1)
where 6(u) is the usual step function
=0, u<0.

This is intuitively clear, but purely formally we may
differentiate (A1) with respect to y and obtain

S ax oy —sn = [ dx 8y — ).

Multiplying both sides of (A3) by W(y), integrating over y,
and interchanging the order of integration, we have at
once

Lo wems = [ Wi

This is just the condition that f* be a rearrangement of
f.

The integrals in (A1) have the following significance:
The left-hand side is the length of the intervals on the

x axis for which f(x) = y. Call the solutions (in increas-
ing order) of

flx) =y

X13%g,...,%on. Then f(x) >y forx; <x <xy,x3<x

< x4,etc., etc. The left-hand side of (Al) is just

Xy — %)+ (xy—%x3) + ... + (¥gn — Xgn-y). On the other
hand, since f*‘tx) is a symmetrical nonincreasing func-
tion of x,the equation

f*x) =y

has only two solutions x = + u(y) (¥ > 0) so that (Al)
becomes

(A3)

(A4)

(A5)

(A6)

(g —x) + (xg—x3) + ... =2u. (AT)

Substituting y = f*() into the left-hand side of (A7), we
obtain an equation for f*(u) (¥ > 0). If there are regions
of finite length on the x axis for which (A5) is satisfied
for a particular y [i.e.flat portions of the curve y = f(x)],
then the x; are determined by the end points of these
regions. The curve y = f*(x) will also have flat portions
of the same length at this particular y,and # means the
largest root of f*(x) =y.
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We consider several elementary examples

i = /b
(1) flx) =ce*b, x<O0, a,b,c>0, (A8)
=ce#/a, x>0,
x, =blog (y/c), x,=—alog(y/c),
Xy —%; =— {a +b)logy/c = 2u,
SHu) = cet2r@d, 5, (A9)

f*u) = ce~2\u l/(a+b),

(ii) fx) =f;, a{<x<b,,

= fo, a, <x < by,
. f1>2f3>f3...>f, > 0.

(A10)
;fn, a, <x<b,,
=0, otherwise,
Call b, —a, =1;. Then clearly (x > 0)
fAx)y=f 0<x<1,/2
=f, 1,/2<x<(y +1,)/2
) (A11)

G+ ... +1,-9)/2
+1,)/2,
x>+l + ... +1,)/2.

= n
<x<({l,+1, +...
=0,

2. Symmetrically increasing rearrangements

Suppose we have a function g(x) which approaches infinity
as |x| approaches infinity,and we want its symmetri-
cally increasing rearrangement *g(x). Again, it is suffi-
cient for equimeasurability to require
o] 0

J 4% 6y — g = [_dx 6(y — *g(x)). (A12)
The left-hand side of (A12) is the length of the intervals
on the x axis for which g(x) = y. Calling the roots of
gx) =y, x,,...,%5,,again,and the roots of *g(x) =y
+u (u > 0), *g(u) is determined by

(g —xy) + -+ (X3 — X5,-1)] = 20. (A13)
Again, when there are flat portions to the curve y = g(x),
a little care must be exercised. Elementary examples
are the following:

(iii) g) = A(x/a — a/x)2,
x<0.

x>0,
= oo,
Direct calculation gives x, = 3a[— a + (a2 + 4)1/2],

%y = 3a[a + (@2 + 4)1/2}, o = (y/A)1/2, Therefore,
Xy — %, = aa = 2u. Substituting y = *g(«), we obtain

*o(u) = 4Au?. (A14)
(iv) g(x) = 0, in the nonoverlapping intervals
(a1,01),(ay,0,),..., (a,,b,),
= o, otherwise, (A15)
*g(x) =0, —L/2<x<L/2,
: (A16)
=0, otherwise,
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where

L=x1,, (A1T)
i=1

l,=b,—a,. (A18)
3. Symmetrically decreasing spherically symmetric
rearrangements

Just as in (1) we need only require

Jar o(fx) —v) = [dr o((/0)]5 ~ v),

where f(r) is a nonnegative function which approaches
zero as |r| approaches infinity and v > 0. Again, the
left-hand side of (A19) is the volume 2(v) occupied by the
set of all points satisfying f(r) = v. The right-hand side
is given by (47/3}r(v) is the largest solution of

(A19)

[fr@)]t = v. (A20)
Therefore, we obtain as the equation for [f(»)]*
Q) =373, (A21)

An elementary example is

Wv) f= F( LZ)AaﬂxaxB] 1/2>,where A, is a real sym-
8

metric positiw’le definite matrix and F(7) is a monotoni-
cally decreasing function of 7. The volume £ is easily
calculated by transforming to principal axes, and we find
at once that

[f()): = F(det A)1/87), (A22)

where det A is the determinant of the matrix A.

4. Symmetrically increasing spherically symmetric
rearrangements

If g(r) is a function which approaches infinity when |r|
approaches infinity,the same reasoning as in the pre-
vious section tells us the *[g(r)] is given by

Q(4g))) = $ar3, (A23)

where ﬁ(v) is the volume occupied by the set of all points
satisfying g(r) = v.

Examples:

i) g= G((Aaﬂxaxﬂ)l/z) [see (v)], where G(7) is a mono-
tonically increasing function of 7. Then

*[g(r)] = G((det A)1/6y), (A24)

Lzl , byl , el
a b c

S(w) = [dr 8(g(r) — v) = [r2drdw 8(rq(6, ¢) — v),

(vii) g(r) = , a,b,c,positive,

where
|cosd cosp|  |cosd sing| |sind|
q(6,¢) = + +
b c

and dw = sind dfd¢. Therefore,

~ 41 . 1 T 1 1

Q) =—v3 — , — = —Jdw—.

( 3 g3 q3 41rf g3
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Finally, then

tletn)] = —=

(1/¢% v

Some of the examples of this appendix have been used to
check our fundamental inequalities. Others, simple as
they are, give rise to interesting inequalities. Thus, if
the g{(x) of (iii) is used as a potential, the energy levels
and wavefunctions are known.12 The energy levels are

(A25)

¢; = (84/a2)1/2{j + } + }{(84a2 + 1)1/2 — (84a2)1/2]},

j=0,1,0- (A26)

Since *g is an harmonic oscillator potential, the levels
are

€% = (84/a2)172(j + 3). (A27)

Therefore, €; > €} for all j, and the partition function
inequality is trivially satisfied.

Another easily calculable case is when the potential is
chosen to be

b= 2A % %y, (A28)
whére A g is a positive definite matrix. By (A24)

*[p] = 3(det A)1/3r2, (A29)
The characteristic values of H are
€ningng = AN 2m +3), n,=0,1,2,..., (A30)

il

where the A, are the characteristic values of A ;4. The
characteristic values of [H]* are

[6”1”2"3 ]t = (det A)/6(ny +my +ng + 3. (A81)
Computing the partition function, we easily obtain

1
I
i 2 sinh{(4,)1/2¢/2]

2] exXp(— €, 4,0 ) =

—_— 1 .
zeXP(— [Enlnzﬂs]:t) = (2 sinh[(det A)l/Gt/Z]) (A32)

The inequality (3.11) now reads

1 - 1 3
? 2 sinh[4,)1/2¢/2] (2 sinh[(det A)l/Gt/2]> (A33)

This is easily proved directly, making use of the fact
that log (sinhr) is an increasing convex function of 7 for
T > 0. Similarly both sides of (3.12) are easily calcul-

able, and the result is again not difficult to prove directly.

Finally, we mention a simple example where the result-
ing inequality is not so obvious. If the potential is given
by (A15), the symmetrically increasing rearrangement is
given by (A16). Again, it is trivial to compute the charac-
teristic values and functions for both H and H*. This
gives for (3.11) and (3.12)

f; i} ST e

r=1 i=1

L
= 25 exp[— m2tr2/2(1, + 1, + --- +1,)2] (A34)
r=1
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and

< 8L, e_(,,zwz),(z,%;)s 5 8, +1;+ ... +1,)
r odd \i=1 7272 y=1 272

X exp[— 72tr2/ 2(1, + 1, + ... +1,)2], (A35)

which are interesting inequalities among theta functions.

APPENDIX B

The results of Sec. 3 may easily be extended in the follow-
ing way. Suppose the “kinetic energy” term p2/2 [p o =
(1/i)@/0x ), (x1,%5,%3) = (x,¥,2)] is replaced by the
more general expression

K(p) = $(M~1) 500 D5, (B1)
where (M ;) is a real constant symmetric positive defi-
nite matrix. This type of differential operator arises in
the study of heat flow in crystals (M~1) 4 is then pro-
portional to the heat conductivity tensor) or in the study
of electronic states in semiconductors [where (M ) is
the “effective mass tengor”]. The only change which this
makes in (3. 5) is that P(r) is replaced by

1

P(l‘):(zTn)aTz-

(det M)1/2 exp — M g% %5/ (2A,)
(B2)

as a simple calculation shows. To apply the inequality
(2.9),we must find the symmetrically decreasing re-
arrangement of P(r) [as given by (B2)] regarded as a

function of z (i.e.,xg). Call this [P’(r)]j. Writing

M g% o%g =Mg322 + 2{M %, )z + M, %, %, (B3)

(where a,b take on the values 1,2), we can complete the
square

Myp% o %5 = Mas(z + My, % ,/Mys)
+ M, %, %y — (Mg, %,)2/My3.  (B4)

Therefore, as we see at once from the definition given in
Footnote 5,

1

P(r)]* = ———(detM)1/2
[Pe)]: = oo o7 et
M., x_)2
X exp [— %An <M332.2 + M, %%, — (%QLH
33
_ 1 *11/2 1 *
= 2, )32 [det(M)]1/2 exp 2A,,(M,)‘mxmxﬂ .
(B5)
In (B5), (M}),; is the matrix
(M:)aa = My, (M :)3a = (M:)a3 =0, (BS6)
(M:)ab =M,y — (1/M33)MsaM3b:
and we have made use of the fact that
det(M?}) = detM. (B7)

Since (B5) is exactly of the form (B2),all the reasoning
of Sec. 3 goes through without any modification, and we
are led to the following result: (3. 9) is still valid if
Gi(r,t|r') is the Green's function corresponding to the
Hamiltonian

[H]; = 3 (M1 Vg pabs + o@] (B8)
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The symmetrization process leading to (B8), may be
applied now to some other direction. By continuing the
process for “all possible directions,” we must finally
obtain the result that P(r) and ¢(r) are replaced by
[P(r)]% and ¥[¢(r)]. Using (v) of Appendix A, we have at
once that

(det M)1/2 o~ (/28 )(detd) 1/3,2

[Br)]* = ( 1 (B9)

2"An)3/2

Therefore (3. 22) is still valid if G:(r, t|r’) is the Green's
function corresponding to the Hamiltonian

[H]} = 5(detM)1/3p2 + o (r)]. (B10)

If we take as an example ¢ given by (A28),H becomes
the general Hamiltonian for small oscillations,

H= %(M-l)aﬂpupﬂ + %Aanaxﬂ
and

(B11)

[H]% = 3(det M)~1/3p2 + 3(detA)1/3r2, (B12)
For this case everything is calculable and, as in Appen-
dix A, the partition function inequality may be verified by
well-known inequalities.

*This research was supported in part by the National Science
Foundation.
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3The type of result which we shall obtain is easily generalized to
time-dependent Hamiltonians, more complicated kinetic energy terms,
and potentials which approach zero at infinity (in which case
scattering theory is involved). We limit our discussion here in the

interest of simplicity. However, the generalization to a higher number
of dimensions forms an important part of this work. A generalization
to a slightly more complex kinetic energy expression is given in
Appendix B.
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rearrangement F ¢(x) of a function F(x) means that F ,(x) takes on
the same values as F(x), but at different locations. That is, for
“arbitrary” W (such that the integral converges)

§2 o W(F(x))dx =% W (Fg(x))dx. The symmetrically decreasing
rearrangement is the Fy (x) which is a nonincreasing function of | x |,
where the origin is chosen arbitrarily. Functions which are
rearrangements of each other are also said to be equimeasurable .

Reference 5, pp. 279f.

"That is, that rearrangement of ¢(x) which is a nondecreasing
function of | x | This is obvious since the definition mentioned in
Footnote 5 tells us that exp{ —A,*[¢(x)]} is a rearrangement of
FUX(x), and it is a symmetrically decreasing function.
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1%There is a limiting process here which certainly requires a little
Justification. However, in keeping with the spirit of this paper, we are
trying to obtain results rather than be rigorous.

"An upper bound on €gsay €,") is foand from the Rayleigh-Ritz
principle. If we take as the trial function one which is spherically
symmetric, it is very easy to see that lowest value of ¢’ (within this
class of functions) is just the ground state energy of a particle in a
spherically symmetric potential #(r) obtained by averaging ¢(r) over
direction for a given |r| Therefore, €, lies between the lowest energies
of two problems with spherically symmetric potentials.

121, 1. Goldman et al, Problems in Quantum Mechanics (Academic,
New York, 1960), p. 63.
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A discrete version of the inverse scattering problem is considered. The Schrédinger equation with a
potential is replaced by a difference equation. The problem is to determine the coefficients given the
phase shift. Application is mainly pedagogical. The motivation for the principal steps becomes
obvious and the mathematics is elementary. At any stage one can pass, by a limiting procedure, to

the usual Schrodinger problem—and reobtain the classical results.

1. INTRODUCTION

The inverse scattering problem in quantum mechanics
can be stated as follows.

We are given that Y(E;x), 0 = x < o, satisfies the
(Schrddinger) equation

L 2UER) _ oy (B;x) = — By(E;x)

2 dx2 .1
and the boundary conditions

V(E;0) =0, y'(E;0) =1, (1.2)
and [assuming that the potential ¢(x) is suitably be-
haved] for E > 0 is asymptotically proportional to

sin(V2Ex + 6(E)], x- . (1.3)

If the phase shifts 6(E) are known for all E > 0, can one
determine the potential ¢(x)?

If the potential is such that there are no bound states,
the answer is in the affirmative, but if there are bound
states

V(E; %),
then, in addition to 5(E), one must know the E, and the
normalization constants

(=
C, = fo W2(E;x)dx.

This problem has been extensively discussed in the
literature, and an excellent exposition can be found, e.g.,
in the recent book by Newton.1

The solution is achieved in two separate steps:

(a) From the knowledge of 6(E), E,, and C;, one con-
structs the spectral function p(E) for the operator

E <0, (1.4)

1.5)

3D2 —q(x)

(this was first done by Jost and Kohn2).

(b) Having found p(E), one constructs the potential by
an elegant procedure due to Gel'fand and Levitan.3

The details are intricate and the presentation (especi-
ally of (b)] not easily motivated. Remarkably enough,
this is not the case if one considers the discrete ver-
sion of the problem. Nearly everything becomes so
transparent as to border on the trivial, at the same
time throwing considerable light on the theory.

Since our purpose in writing this paper is largely peda-
gogical, we do not strive for optimal conditions, thus
sacrificing generality for the sake of simplicity and
clarity. .
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2. A DISCRETE VERSION OF THE GEL'FAND-
LEVITAN PROCEDURE

The obvious discretized version of (1.1) is
F[W(E; (n + 1)8) — 2(E;n8) + Y(E; (n — 1)A)/A2

+ [E — q(na)W(E5nd) = 0, (2.1)

but it turns out that the discussion can be greatly sim-
plified if instead of (2.1) we take
TUE; (n + 1)4) + Y(E; (n — 1)8)

= (1 — EA2) e2%60y(E;ns), (2.2)

which in the limit A — 0 also goes over into the Schro-
dinger equation (1.1),

Setting
A =1-— EAZ, (2.3)
vn) = A2¢(na), (2.4)
and
o(A;n) = e? /2 Y(E;nA), (2.5)

we see that (2. 2) can be rewritten in the equivalent form

3 e @2 DY2 (A0 + 1) + LeTo6-Dro@)/2 p(a;n — 1)

=26(;n), (2.6)
which in matrix notation becomes
Ap =2r9¢, (2.7

where the symmetric matrix 4 is tridiagonal, and its
(m,n) element a,, , (m,n = 1) is given by the formula

e (m+o@V2 (§ (2.8)

am.n % m,n+1)'
For future convenience we shall set
v(0) = 0.

The boundary condition ¢(x; 0) = 0 is automatic, and we
take

o(x;1) =1

rather than ¢(x; 1) = A as the other boundary condition.4

(2.9)

Let A be the matrix corresponding to v(rn) = 0, i.e.,
amn = %(Gm,n-l + 6m,n+1)- (2. 10)

In this case

9 A+ (A2 — 1)1/2172 — [x — (A2 — 1)1/2]»
$oyn) = AT 02 = DV — A — (02 — 1)77]
2(x2 — 1)1/2
(2.11)
Copyright © 1973 by the American Institute of Physics 594
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satisfies the recursion
1d(n + 1) + 38(yn — 1) = 26 (4;m), (2.12)

and the spectral distribution o(2) is given by the well-
known formula

(0, a<-—1,
o) ={2 [2 Yl — p)l2dy, —1<A<1, (2.13)
1, a>1.
Let the spectral distribution of A be p(}), so that

J osm)e(;n)do@r) = 6,,,,, (2.14)

[re (x;me (X n)dp(N) = a,,, (2.15)
and in fact

Jro@;mo(;n)dp(a) = a), (2.15%)

where a) is the (m,n) element of A7,

Since the ¢(A;7) are polynomials, they are the orthogonal
polynomials (properly normalized) with respect to the
weight p(A).

The inverse problem is now almost trivial because given
p(x) we can determine the orthonormal polynomials with
respect to p and then calculate @, ,,,. There are two
important points which remain, The first is that since

By ey = 5 €WV DY 2 (2.16)
is positive, one must be sure that the orthonormal poly-
nomials are such that

[ro(sn)o(a;m + 1)dp(r) > 0. (2.17a)
That this condition can indeed be fulfilled will become
apparent in the sequel. The second point is that p cannot
be prescribed quite arbitrarily, since we must have

a,, = [2$2(5m)dp(A) = 0. (2.17)
We must therefore impose an a priori condition on p to
insure (2.17b). The simplest such condition is that

p(=2)=1—pQ), (2.17%)
which insures that the orthogonal polynomials are

either even or odd and hence (2.17b). From now on
(2.17’) will be assumed.

Given p, we imitate the Gel'fand-Levitan procedure by
seeking the orthonormal polynomials in the form

n-1
o0in) = K, md(in) + 2 Kor,m)e(im). (2.18)

The polynomial ¢(x;n), which is of degree n — 1, is
orthogonal to every polyngmial of degree lower than
# — 1 and hence to every ¢ (x;m) for m < n.

Thus, orthogonality conditions are equivalent to

Josmd;m)dp0) =0, m <n, (2.19)
and setting
q(m, 1) = [S;m)d(; Dd(p(A) — o(A), (2. 20)
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we see that (2.19) can be rewritten in the form

n-1
0 = K(n,n)q(n,m) + K(n,m) + 25 Kn,)q(l,m),
=1

n>m, (2.21)

which is strongly reminiscent of the Gel'fand—Levitan
equations.

The normalization condition

Jo205m)dp(n) =1 (2.22)
is equivalent to the condition

K(n,n) [ $(rsm)$(a;n)dp(a) = 1, (2.23)
which upon using (2.18) and (2. 20) becomes
K(;,n)= K(n,n)[1 + qln,n)] + :lZi)i K(n,1)q(l,n). (2.24)
Setting

kn,m) = [Kn,m)|/[Krn,n)], m <n, (2.25)
we see that Egs. (2. 21) can be written in the form

0 =qrn,m) + kn,m) +§K(n,l)q(l,m), (2. 26)

and these equations constitute a system of n» — 1 linear
equations from which k(n,m),1 =m =n — 1,are
(uniquely) determined.

The normalization condition (2. 24) now assumes the
form

1

n-1
=1+ qr,n) + lglx(n,l)q(l,n),
and serves the sole purpose of determining K(n, #).

Since K2(n,n) is involved, there is an ambiguity in sign,
and keeping in mind the fundamental recursion (2. 6)
[which implies that the leading coefficient of ¢p(r;n),
which is K{n,n), must be positive], we are compelled to
choose the plus sign.

Finally,

8, o1 = [ RO (0,7 + 1)dp(n)
= K(n,7) [xp(;m)p (1 + 1)dp(n),
and since
2$(;n) =10 — 1) + Ld(n + 1),
we obtain [using (2. 23) with (n + 1) instead of #]

@, po1 = 3K0,n) [d(n + Do + 1)dp(A)
_1 K(n,n)

== , (2.28)
2 Kn+1,n +1)

or equivalently

3[v(n) + v(n + 1)] = logK(n + 1,n + 1) — log K(n,n).
(2.29)
Equation (2. 29) does not in general determine v(#), but
if, e.g., it is known that

}‘1_& v(n) = 0, (2.30)

then, in fact, v becomes uniquely determined.
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To see this, note that

n
o 2o(n + D] =3 (- 1)1 1g KO+ L7 + 1)
r=l K(r,7)
and hence
Kr + 1, +1)

o0
3v(l) = 25 (— 1)7*t log ————~,
r=1

Kr,7) (2.31)

where the convergence of the series in (2.31) is a con-
sequence of (2. 30). Conversely, if the series in (2. 31)
converges, then (2. 30) follows.

While it does not seem to be easy to give simple condi-
tions on p to insure (2. 30), it is clear that if p and ¢
are sufficiently close, then (2. 30) will be satisfied.

3. REMARKS AND AN EXAMPLE

1. If we consider (2.18) for — 1 < A < 1 (which in
view of A = 1 — EAZ2 implies that E > 0), and set

A cosé,
we obtain
¢(\;m) = (sinm8)/(sing),

where 8 = arccosA = arccos (1 — EAZ2), so that for small
A (and fixed E) we have

0 = AV2E + 0(A2).

Thus

sinnAV3E
AG(E;nA) ~ K(n,n)a SHANAVEE
o(Esna) ~ Klnma o Vo

n-1
sinmAV2E
+ A Kn,m) —————
E’l tr,m) sinAY2E

and from (2. 29) it follows on the assumption of conver-
gence of the series

(3.1)

<]

2 vln)

n=1
that log K(n,n) approaches a finite limit as» —» ©, It
thus appears that in the limit

A—0, nA=x

(3.1) should go over into

sinw/2E x sintV2E
Ex)=a ————— + K(x,8) ——=—d&, (3.2)
V(B x) = o SRABE - [Fxr, SRR gt (
and that o = 1 if the boundary condition ¢/(E;x) =1 is
to be satisfied.

Formula (3. 2) (with @ = 1) is, of course, the basic re-
presentation of the Gel'fand—Levitan theory.

2. If we consider a simple random walk (with equi-
probable +1 steps) and denote by s, s,,* - - the consecu-
tive displacements, we have by definifion of the mathe-
matical expectation that

r
E{GXP—CZ v($,,)>;s0> 0,s,>0,...,
=0 S,._1>0|sr=s>0}

r

= 2 eXP(— 27 .v(s,,)>

s1>0.s2>0....,sN_1>0

XP(SO|SI)P(81|SZ)' . 'P(s,-_lls)y
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where P(x|y) is the transition probability to go from
x toy, which in our case is given by the formula

Plx|y) = 360,y — 1) + 3 6(x,y + 1),
and 6 is the Kronecker symbol.
It thus follows that

2=0
= e-[v(so)*+v(s)}/2 asg's'),

¥
E{exp<—2v(s,,>;so> 0,5, >0,...,5,_;>0ls,=s> o}

r=1, (3.3)

where ags) is the (sy, s) element of A”, A being the
matrix defined by (2. 8).
Using the spectral representation, we can rewrite (3. 3)
in the f'o;',xp
" 4
E{exp(— b v(s,,));so> 0,5,>0,...,5,_,>0ls,=5s>0
=0

= ¢ ON2 [ 30 4(; 500 (2; 5)dp(A). (3.4)

Setting s, = s = 1, we obtain [in view of the normaliza-
tion ¢(r; 1) = 1]

[xdp(r) = e-v® E{exp(—-rz-)l v(s,,));
£=1

Sl>0,...,s_1>0|s,r=1}, (3.5)

which connects the moments of p(A) with the “potential”
v(n).

3. To illustrate the theory, we shall work out an ex-
ample which is an analog of an example worked out by
Gel'fand and Levitan,

Let
dp(\) = adao(d) + 3(1 — a)6(x —X}da

+3(1—a)s(a +a)dr, (8.6)

where 0 < o =1landX > 1.
We have
al,m) = [$(; DQ;m)d(pR) — o(A)
=—(1-a), ,+3:(l—a)
x[1 + (= D""ER; DEE;m).
Equations (2. 26) become

3.7

0 = aki,m) + (1 — @)[1 + (— D] $(X;n)p(A; m)
+(1— a)p(r;m) ,E ko, D ;1)

even
1<i<n-1

(3. 8a)

if m is even and
0 = akln,m) + 31 — &)1 — (— 1)*16(X;n)d(X;m)
+ (1 — a)d(r;m) ,E K(n,1)p (X; 1)

odd
1<ikn-1

(3.8b)

if m is odd.
It is now quite easy to obtain

k(n,m) = — 3[1 + (= 1)*](1 — a)p(X;m)d(;n)
X[a+(1—a) P> &201;1)]-1 (3. 9a)
4 1

<n-
leven
for m even and
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kir,m) = 3[1 — (= 1)*](1 — @) (X;m)P(;7)
X[a +(l-—a) T &32()1;1)]-1 (3.9b)
l 1

<~
lodd

for m odd I, particular, it follows that k(z,m) = 0 ifn
and m are of different parity.

Finally, substituting into (2. 27) we get

2(;m
K2(n,n) = a{l ti-e a+(1-— i)( E) &(X;m)}

ﬁjﬁi (3.10a)
if » is odd.
If # is even and similarly
———1—=a§1 +(1—a) PEm) }
Kmn) | at+(1—0a) T $2(;m)

moad (3.10b)

It is not difficult to convince oneself that, to pass to the
continuous limit, one should put

A=1+ EAZ,
and
a=1—-cA3, ¢>0. (3.12)

One then obtains by a straightforward calculation that

(€ =—E) (3.11)

K(x,x) =— c sinh2xv2e f2e + ¢ fox sinh2£y2€ d&)
(3.13)

4. DETERMINATION OF SPECTRAL DENSITIES

To simplify the discussion, we shall assume from now
on that

vr) =0 forn > n,, (4.1)

so that for sufficiently large n

o(;n) = aM[r + A2 — 1)V2]2 + Y[ (A2 — 1)1/2]=,

: (4.2)
For — 1 <A< 1,we can set
A =cosf
and rewrite (4.2) in the form
®(8;n) = A(8)ein0 + B(6)e in0. (4.3)

From the normalization condition
[ 92(;m)dp(0) =1,

it follows that
ST P*amde() <1,

and dividing by A2” and letting » —> ©, one obtains
J azyap) =o,

so that a(d) = 0 at every point of increase of p for

A > 1, Similarly, f(A) = 0 at every point of increase of
p(A) for A < — 1,

In other words, if A > 1 (A < — 1) is a point in the spec-
trum, then a(x) = 0 [B(0) = O].
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All this is merely to confirm that eigenfunctions must
be bounded.

The question whether there are bound states can be
approached as follows.

For A > 1 the only candidates for bound states are, for
sufficiently large n, of the form

$;n) = BANA — (A2 — 1)V/2]7,
and since ¢ and ¥ are identical for large n {they differ
only by a factor exp[v(n)/2], and hence not at all when
v(n) = 0}, we also have (for sufficiently large »)

Y(x;n) = B — (A2 — 1)1/2]=,

If we now use repeatedly the recursion

Y(n —1) = — ygn + 1) + 20e?t(a;n), 4.9
we ultimately arrive at the formula
Y(x;0) = BAP(\ — (a2 — 1)1/2), (4.5)

where P(2) is a polynomial [of degree 2n if v(n,) = 0].
In deriving (4.5), repeated use is made of the identity

™ =a— A2 —-1V2 4+ [a -~ (A2 —1)1/2]1,
Similarly, for A < — 1 we have

Y(;0) = a)P( — (A2 — 1)1/2), (4.6)

where P is the same polynomial as in (4. 5) and where
in deriving (4. 6) we use repeatedly the identity

20 =2+ A2 —-1V2 + 2+ (2 -1)1/2]1,

It is now apparent that to each root of P(z) which lies
inside the unit circle there corresponds a bound state,
and vice versa. These roots (if any) are real, and since
P(z) can be seen to be of the form @(z2),5 they come in
positive—negative pairs.

In the Appendix, we also prove that the real roots are
all simple.

Let us assume now that — 1 < A = 1, and set
A = cos?f.

Let us also define {,(8;7) and y.(8; %) as the solutions of
the recursion

Wgn —1) + 2P(n + 1) = xe?™MyP(a;n), (4.7

which for sufficiently large » are given by the equa-
tions
Y, (6;n) = e*ind, (4.8)

It is clear from the definition of the polynomial P(z) that
we have

¥,(6;0) = P(e*i0), (4.9)
Consider now
Y(8;n) = e (/2 ¢(6;n), (4.10)

which is the solution of (4. 7) satisfying the boundary
conditions
W(e; 0) = o,

Y(6;1) = ev)/2 (4.11)
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[the second boundary condition is merely a consequence
of the boundary condition ¢(x;1) = 1],

Since every solution of a second~order recursion is a
linear combination of any two independent solutions, we
have

V(8;7) = A(8)¥,(8;n) + B(O)Y.(6;n), (4.12)
and by (4.11) and (4.9) we conclude that
0 = A(9)P(et9 + B(0)P(ei9). (4.13)

Now, if ¥4 (A;2) and ¥, (A;7) are two solutions of (4.7),
i.e,, if

%‘p]_()t;n— l)+%l,’/1(h;n + 1) =ev (")\pl(k;”),
357 — 1) + 3Y(A;n + 1) = xe?@Yy(a;n),

then, multiplying the first equation by ¥,»(x;7), the second
by ¥, (x;n), and subtracting, we obtain that for allé »

V(g — D (n) — Ypasn — 1), (A7)
= ‘pl(k;n)‘pg(h;n +1)— ll/z(h;n)llll(k;n +1),

or, equivalently,

‘1/1()\; 0) Wz(“ 1) — tllz(h; 0)%(&; 1)

=) (e + 1) — (A n)d,(An + 1), (4.14)

Setting ¥, = ¥,,¥, = Y. and choosing n large enough for
the validity of (4. 8), we obtain [using also (4.9)]

¥.(6;0)¥.(6; 1) — ¥.(6; 0)¥.(6; 1) = 21 sine.
From (4.12) and (4.11) we have

ev(V2 = A(9)¥.(6;1) + B(6)¥.(6;1), (4.15)
which, combined with (4. 13) rewritten in the form

0 = A(6)¥,(6; 0) + B(6)y.(6; 0)
and with (4. 15), yields

A(8) = e"» (/2 [.(0; 0)/2i sind] (4.16)
and B(9) = e (/2[y,(8; 0)/2i sind]. (4.17)
Finally,

A(0)B(6) = e *[y.(8; 0)¥,(6, 0)/4 8in29], (4.18)
or, equivalently,

A(0)B(6) = e "D [P(ei0)P(ei9)/4 8in26]. (4.19)

There remains now to connect the spectral density with
A(8)B(9) = A(6)A*(6) = | A(9)]2.

This is done most quickly by using Eq. (3. 4) and setting
$g = 8. Summing over s; from 1 to N and dividing by N,
we get

2 E{exp<—Zr} v(sk);so >0,...,5.,>0ls, = so}
1
N B
= far L 5 eutwr g2 5)dp(n). (4. 20)
N so=1

If we let N — o, then

J. Math. Phys., Vol. 14, No. 5, May 1973

N
im L 3 e p2(a;8) =0
N> N g=1

for every bound state, while

N
Jim L 5 expi— v(so)p200; 50) = 214(0)12
© N g=1
= 2| A(cos™1))|2

for all scattéring states. If we now look at the left-hand
side of (4. 20), we note that for sy > n, + » the random
walk cannot reach the part of the s-axis where v(s) # 0,
and therefore the limit as N — ® is the same as if v
were identically zero. In other words,

N-+00

N r
lim 1 > E{exp(——E v(s,,));s0 >0,...,5.1 >0]s, = so}
N =1 1

=1

I .
17 (1 —2a2)Ve2

N
=[x ym 117 soz $2(; sp)do(n)

QA=

Combining all these considerations, we obtain that for
all integers »

1 1 M1 dx
-1y)i2 - = —_—
2 [ 27| A(cos )|2dp(a) = £ f_l » 1 — a2z’
(4.21)
and we have
() = 1 ax (4.22)

21 |A(cos1n)|2(1 —a2)V/2"
Thus, | A(6)|2 determines p(A) for —1 =< x =< 1, and hence
the potential (or rather) [v(n) + v(r + 1)}/2.

However, it is clear that | A(6)|2 cannot be prescribed
arbitrarily.

By (4.19),
| A(8)]2 = e P(e-i8)P(ei6)/4 sin2, (4.23)

and P(z) must be a polynomial of degree 27, and of the
form Q(z2).

5. DETERMINATION OF |A(6){> FROM THE PHASE
SHIFTS

If we write

P(ei®) = |p(eiO)|e-i6(e)’ (5.1)
then

P(ei8) = | P(eid)| eis(-9),
Since P(ef®) and P(e 9) are complex conjugates, it
follows that

6(— 6) =—56(8). (5.2)
For large n, we know that

¢(0;n) ~ sin[nd + 6(6)]. (5.3)

Given 6(0) for 0 < 6 = 7, we ask what can be said about
p(r). It will be seen that § determines the number of
bound states. If in addition one is given the position of
the bound states, then |A(8)|2 is determined, and hence
the continuous part of the spectral function [see (4.22)].
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One then still needs the normalizing constants to know
the spectral function completely and hence to determine
the potential.

Let A, denote the change in going around the unit circle.
Since P(z) is analytic for |z| < 1, we see that

A, arg(1l/P(z)) = — 21N, (5.4)

where N is the number of zeros of P within the unit
circle (and hence the number of bound states).?

Consider first the case of no bound states. Then P(z)
has the following properties:

(a) P(z) is analytic and nonzero in |z| < 1.

n

) P(0) = exp(Zi} v(k)). (5.5)
(¢) Onizl =1,
— _2is _ P*2) _P(1/2)
§= e =2 = P (5.6)

We note that the decomposition of S such that P has
properties (a), (b), and {(¢) is unique. Indeed, suppose
there were two such P’s, which we denote by P, and P,.
Let

q(z) = Py(2)/P,(2), lz|<1,
and (5.7
q(z) = Py(1/2)/P,(1/2), lz|> 1.

Since P}, P,are analytic and nonzero for | z| < 1, we see

that ¢(z) is analytic in the whole plane cut by the unit
circle. However, on the unit circle

P,(1/2)/P(2) = P,(1/2)/Py(2),
or

Pl(z)/Pz(z) =P1(1/z)/P2(1/z)' (5.8)

Therefore, g is continuous across the cut. Thus,q is
analytic everywhere. It approaches 1 as z — 0, since

P,(0) = P,(0). By Liouville’s theorem
g=1

and (5.9)
Py =P,

ro(z)

Consider now the function e where

1 f lnzS(i’)zdz’

To(z) = 14 912—)—‘1—;—

(5.10)

In virtue of the absence of bound states [Eq. (5. 4) with
N = 0], exp(T,(2)) is analytic and nonzero within ¢. As
z - 0, we have

— i5(2).

To(z) = — (5.11)

® r6(z')dz’
m f 2'—z
To see reality properties, let us change to the variable
0. Using the antisymmetry of 0, this becomes

7 8in 6'6(0') do’

[\4
T,(0) = —
o(®) 0 cosf — cosé’

— i5(0). (5.12)

Therefore,

T3(z) = Ty(1/z) = & [ $in6°8(67)a¢’

7 "0 cosf — cosh’

+ £6(8).
(5.13)
We also note that '

1 d‘ 8(z")dz’ ; f" b(el)del = 0.

Fofe) -0 == z 2L (5.14)
5.14
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Hence, setting

()
= Ae o(z,

P(z) (5.15)

with A chosen so as to satisfy the normalization

Jap) =1

[with p(r) defined by (4. 22) and (4. 23)], we see that P is
determined uniquely and

gy
= exp(Z) v,,>.
1

Hence,

|A(6)12 = A2 exp(

o Snoo(@)dst 8(07)d6 /4 sin20,
0 cos® — cosb'’

(5.16)
and
0, a<-1,
1
s s o )
1, A>1,

—1<a<1, (5.17)

When bound states are present atz (i =1,2,...,N),
the following modifications are made. Now by the prin-
ciple of the argument,

A arg$S = 2(— 2m)N. (5.18)
Consider then
¥ (z2— )

nmn ———.
=1 [(1/2) - 2]

[ —

Here A_ S’ = 0 and S’ has all the properties § had with
no bound states. Hence it has the decomposition

S’ = er*(z)/er(?-)
with

re) =- L g 80d, (519
T ¢ z2'—z
where
N (z — z)
6’=6+ % arg Y1/ — »1
iz 1 [(1/2)—2]
Then,
% — 2,
s @ x [a/2) z,], zee. (5. 20)

ef@ i1 (7 _2)
A decomposition of S into a ratio P(1/z)/P(z) with pro-
perties (a)-(c) (except that now P has zeros at and only
at z; in the unit circle) is then obtained by inspection.
Namely,
N

P(z) =Ael"(’=)il;[1 [1—(2/2)], (5.21)
where A is again chosen so as to satisfy a normaliza-
tion condition. (The uniqueness argument proceeds as
before.)

Since we have seen that the discrete eigenvalues occur
in equal and opposite pairs, we can express everything
in terms of those eigenvalues (z or A) which are posi-
tive. For the spectral function we then find
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(N/Z 1
2 = 8(a +2)dr,
i=1 C;

3 (1 — AZ)I/ZAZ exp<g @flm)
T

A< —1,

7 1 AT —

N/2 (1 — A2)1/2\2

x M |1 — (AL =A<,
i=1 P (;\iz —1)V2
N/2

1
LE o 6(r — x)dn,

A

dp(x) =

A> 1, (5.22)

=1

and A is such that
Jap(n) =1.

6. SUMMARY

Let us now put together the pieces of our solution. We
are given the discrete eigenvalues x; (|x;| > 1), the
normalization constants C; such that C; = §¢2(Ai,n), and

6(2) for —1 = a = 1, From the phase shift and the a;,
we calculate | A(9)]2 for — 1 = A < 1 as in Sec.5. From
this we obtain dp(A) [Eq.(3.17) or (5. 22)%. We then take
the comparison function ¢(A,z) = (sinn6)/(sind) with
spectral function

do(\) = (2/m)(1 —A2)V/2dx, —1=Ar=1, (6.1)
Using these, we construct g(z,m) with Eq. (2. 20). The
generalized Gel'fand—-Levitan equation [Eq. (2. 26)] is
then solved for K(z,m). Equation (2. 27) gives K(r,n).
The average of two successive values of the potential
then follows from Eq. (2. 29). Requiring that the
lim, ., v({#) = 0 then yields all v(z) uniquely.

It is instructive to see the limiting form of our equa-
tions as A —» 0. For this it is convenient to change
normalization. Let us replace ¢,¢ by ¢’, ¢j, where

¢,(A’n) = Ad’(hyn),

dp,7) = Ado(A,n), (6.2)
and require that
IZ ¢r0umerx,mdp')
= [ 660, m)0gn, m)do’ = 9(-"~Ai”—) (6.3)

(Thus p’ = p/A3, ¢’ = ¢/A3) Then in the limit A— 0,
nA = x finite, we obtain

d(n,n) > sinv2Ex/V2E (6.4)
de'—0, E<O,

- (2/mM)V2EdE, 0< E<o, (6.5)
Omitting bound states for simplicity, we similarly
obtain

dp’ >0, E<O,
o0 ’ ’
(/M VIE exp [~ 2 0" YENAE N;p  (6.6)
7 0 E —F

The Gel'fand-Levitan equation [Eq. (2. 26)] becomes

0=¢q'(x,y) + «'(x,y) + ]: K'(x,t)q'(t,y)dt, x>y,
(6.17)
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with
40,9 = [ 04(E, x)bY(E,3)d[p" — o). (6.8)

The equation for the coefficient of ¢4(E,») in the expan-
sion of ¢(E,n) [Eq.(2.27)] becomes for small A

1
— =1 — Ax’'(x,x). 6.9
K'2(n,n) (e, %) (6.9)
Then
.1
q(x) = ]AI—P‘OI :z[an(n + l,n + 1) —K(n,n)y]
1 d
== —Kk'(x,x 6.10
5 In (x,x) (6.10)

In terms of the solution k’(x, y) of Eq.(6.7), the expres-
sion for ¢(E,x) is

E,x) = SIVZEL (%0 ) SInVEEY 4 (6.11)
B(E,x) = S + J) ae,) N B
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APPENDIX: SOME PROPERTIES OF SYMMETRICAL
THREE-TERM RECURSION RELATIONS

Consider the three-term recursion relation
aln + IW,n + 1) +burwQ,n) +ak — 1w,z —1)

= Xg(”)ll/(h, n)’
where

(A1)

1=n,

(i) The a(n),b®),g({n) are real.

(ii) The limits of these as n — © exist and are approach-
ed sufficiently rapidly. (A sufficient but certainly
not necessary condition is that they are all con-
stant after some N.)

(iii) g(r) > 0.

We obtain an eigenvalue problem when we ask for those
A for which a “regular” solution exists in the sense that

Y(r,0) =0, Y@R,1)=A =0, (A2)
and ¥(A;7) is bounded. The results are very similar to
those for second-order self-adjoint differential opera-
tors; namely:

(1) There is a continuous spectrum for

< —2a <A< B+ 2a, (A3)
where
B =b(w)/g®), a =a(®)/g(x). (A4)

If we write A = 2a cos@ + 8, then in z = ¢%© the con-
tinuous eigenvalues lie on the upper half of the unit
circle.

(2) There are at most a finite number of real, simple,
discrete eigenvalues A; which lie outside of or at an
edge of the continuum. (In z these are real and on or
within the unit circle.)

(3) If b(n) = 0, the discrete eigenvalues occur in pairs
#£X;. (This is also true in z.)
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(4) The eigenfunctions form a complete orthogonal set
in that

o]
"Z}Iz#(h,n)g(n)w(h',n)
= o —a) LA2DE 6 g)pe,
a(®) sing
A, A’ € continuous spectrum,
=0, A =2x,)\ € continuous spectrum,
5 [BDAR w0, 0000, 0)

IR APT

A, A; discrete
2i sing, ’ v (A5)

Here Y, (A,n) are solutions of Eq.(Al) subject to the
condition

lim (¢, (,7) — eim0] = 0, (A6)

a(w) < 2i sin6y(\;, NgW (N, mIVE(m)
[a(l)A]2 i 1’/+(A.i, O)W-(hi, O)
1 amax 4 sinéy(n, n) Veln) zp(h,m)dgimi) (A7)
1w, (x, 0)]2 )
Many of these results follow from the following identity.

Let ¥, (,n),¥,(2’,n) be two solutions of Eq. (Al). Then
by standard manipulations, we obtain

6(n,m) =

T ‘Amin

a(n + DY\, n (A, n + 1) — P (A, ), (A, 7 + 1))

+ a@m)[W(A, m ) (A, + 1) — Yy (A, m (0,1 — 1)]

= (A — A Wo(a', n)gn ), (A, n). (A8)
Putting A = A/, we obtain the result that

WYy, W] = ale + D[y, (3,n + 1n(r,n)

—Yi(a, m(,n + 1)] (A9)
is independent of ~.
There are two immediate applications.

(1) Since y,(x,n) are two linearly independent solu-
tions, we can express ¥ satisfying the conditions of Eq.
(A2) as a linear combination of these. Thus

W[\U ’ W—] W[d/ ’ w*-]
wimv] 0 T B

Evaluating the Wronskians at#n = 1 and in the limit»n —
®© yields

Yv(x,n) = Y., 7). (A10)

a(l)A

y(,n) = m

[lll_(h, 0)‘1&(?\,") - ‘M—(Ay O)llf_(?t,")]-
(Al1)

Similarly, given any two linearly independent solutions

(¥1,¥,) of Eq.(Al), we can express the Green’s func-

tion, i.e., the solution of

a(n + DG\, n + 1;m) + b(n)G(\,n;m) + alr)G(A,n;m)
+am)G(A,n — 1;m) — A\g)G(A, n;m) = 8(m,m),

(A12)
in the form
G\, nym) = — LA \ID) , n<m;
Wiy, ¥, (413)
= — Y, miy,(,n)
Wbl
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In the special case of translational invariance—when the
coefficients are independent of n—we have an even
simpler result. Thus, let  %(A,»n) be the solution of

%¢O(A,n + 1) + b0¢0(>‘s n) + a0¢°()t,n - 1) = Ago‘l’ O(A,n)!
with

¢O(Av 0) = 0’ ¢0(As 1) = 1/00,
i.e.,

$O(x,n) = (sinnd)/(a, sind), (A14)

where 24, cosf + b0 = Ag,. Then two Green’s functions
are

o0, n —m), m<n,
GO, n;m) = (A15)
(0, m=mn,
and
g 0, m=mn,
GOM,n;m) = . (A16)
?¢°(A,m——n), m>n.,

With these we can write integral equations for solutions
of

G, n + 1) + bW (A, n) + agy(A,n — 1) = gY(, 7).

(A17)
So if ¥ is to satisfy Egs.(A2),
n-1
ll/(h,?’l) = aOA‘PO(A’n) + Z:%(bo(hyn -~ m)
x{x[glm) — g5] + [bo —bm)}w(x,m)  (A18)
and
V0 = e 15 900, m —n)
m=n+l
X {A[gm) — gg] + [bp — b(m)[W, (A, m). (A19)

From Eq. (Al11) it follows that if 0 =< § = 7 (A in the con-
tinuum), there are solutions satisfying the equation plus
initial conditions which are bounded at infinity. “Bound

states”-i.e., summable solutions—occur when there is

a z;, |z;] =1, such that ¥,(x,,0) = 0.

Choosing g, = g(%), b, = b() in Eqs. (A18), (A19), we
readily see a number of properties which are actually
more generally true. Thus for real 8, replacing by —
leaves ¥ unchanged, while ¥, and ¥, are interchanged.
Also, Y, = ¥*, With some modest convergence require-
ments, we also see that §, is analytic for |z|< 1, while
¥ is analytic except for a pole at z = 0.

The analyticity of ¥, for |z| < 1 then implies that there
are only a finite number of zeros of {,(A, 0) and hence

a finite number of bound states. Bound states in the
continuum are forbidden since ¥, = 0 implies ¢ = Y¥ =
0, and then we see from Eq. (A11) that ¢ vanishes iden-
tically. There can be exceptions. Since sinf vanishes at
the edge of the continuum, there can be bound states
there.

Further properties result when we sum Eq. (A8) from
n =1 ton = N. The identity now becomes

a(N + D[, Ny (0, N + 1) — %, (0, N, N + 1)]
+ a(l)[wZ(Allv' 1)"’1(A’ 0) - W]_(Ay 1)4’2()‘” 0)]

=@a-—-2x) Zl) Yo (A, n)g i (A, n). (A20)
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If we choose ¥, to be a bound state {Y/(A;,n)] and y, as
its complex conjugate, we have A’ = A%. In Eq.(A20) the
terms proportional to a(1) are identically zero while
those proportional to a(N + 1) vanish as N — ©,

Hence we have

2i Ima, 21 | W,,n)|2g(n) = 0. (A21)

Thus the eigenvalues are real.

Similarly, if in Eq.(A20) we puty; =¥ ;,n) and ¥, =
¥,(A’,n) (with A’ near 1,), we can again pass to the limit
N — «© with the result

2 , v e, 009y, 1)
nz:/l ‘I/a,()\i,n)g(")‘k()\ ;n) - A — )‘i y

(A22)

since ¥,(x;, 0) = 0. Passing to the limit A’ —»x;, we
find

%, W20, m)gn) = all)hlay, D, ) (A23)

where J,(1;,0) = (@/dA) %, 0], -, . Thus.(r;,0) =0,

and therefore the eigenvalues are simple. Further,
since for bound states Y, ~ ¥, we have the normalization

[a(1)A)2 ¥.(;, 00y (x;, 0)

. A24
a(®) 2i sing, ( )

Z v, nlegt) =

Finally, choosing ¥; =¥ (;,n) and ¢, either a Y/(x;,n)
(i =j) or a continuum function, we obtain

> v =0, X =X, (a25)

If in Eq. (A20) we use two continuum wavefunctions, then
the terms in a(1) are zero and for large N we can re-
place the Y’s by their asymptotic forms. We obtain

(a—x1) Z)l v(x',n)gn)Yr,n)

_ [a(1) A)21¢,(r, 0) [y, (a7, 0)[{ }’ (A26)
2a() sind sins’

where

{} = (cosf — cosb’) cos(N8' + &' — N — ©)
— (cosé — cosh’) cos(nb’ + &' + N§ + 6)
+ (sin® — sing@’) sin(NG’ + &’ + N6 + o)

+ (sind + sind’) sin(N6 + 5 — No’ — &’). (A27)

[Here — 6 = argy.(x, 0).] If we now divide Eq. (A26) by
{, — 1’) and integrate over a small region AA’, we find
in the limit N — © that we get zero unless the region
includes A. If it does, the result is independent of the

size of Ax’. Thus the sum is proportional to 5(x — '),
Evaluating the integral then gives

i;l YO, @)W, 7)
(= A ARG, 01250 — 1)

A28
a() sinf (428)

We merely sketch the proof of the completeness rela-
tion [{Eq. (A7)]. Let h(m) be an arbitrary square sum-
mable function. Form
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In) = -1— fdh OZO) G, ny;m)him), (A29)
21 ¢ m=31

where c is the unit circle in the z plane and the Green’s
function in accord with Eq.(A13) is taken to be

=y, n)Y.(x, m)
a(1)Ay,(r,0)

m,

- ’M(M")W(M m)

a(1) Ay, (x, 0)

b

I(n) is then evaluated in two ways. First, using the known
properties under the reflection 8§ <> — 6 it can be writ-
ten as an integral over the continuous spectrum of a pro-
duct of the continuum eigenfunctions., Second, introduc-
ing the variable z we can evaluate the integral by resi-
dues. The singularities of the integrand within the unit
circle lie at the zeros of Y,(x, 0) and a pole at z = 0.

The first kind of singularities give contributions pro-
portional to the bound state wave functions. (The rea-
son for the appearance of Y, (x;, 0) becomes clear here.)
There is a simple pole at z = 0 which appears only in
the term where » = m. To evaluate the residue, we

need the behavior of ¥ and ¥, for z ~ 0, For simplicity,
let us consider the case where all coefficients reach
their asymptotic values at some n = N, Then directly
from the recursion relation we find that for sufficiently
small | z] we have

\D(A,n) ~ 2 n_lﬁ(n_.'__l.).'_“.g;(}l (A31a)
and z aln): - -a(z)
v.(A,n) = aN-nzn gl +1)---g(N) (A31Db)

am + 1)+ aN)

For the crucial quantity determining the residue at
z = 0, we have

- W(M")‘M(M")
¥ (x, 0)2iz

—a(1)A
£=0 = 2% aghn)’

(A32)

This residue is proportional to #(z). Then, equating the
formulas for I (), we have an expression for k(z) in
terms of sums and integrals over the eigenfunctions.
Inserting 2(n) = 6(n,m) then yields Eq.(AT).8

Finally, we note the simplification occurring if b(z) = 0.
The eigenvalue equation is

a(n + DY, + 1) + a) Y (5,7 — 1) = Agn) YA, n).

(A33)
Suppose A; is an eigenvalue corresponding to eigen-
function Y (x;,n). Let

V= (= 1)mY@g,n). (A34)

We readily check that this satisfies the boundary condi-
tions and Eq.(A33) with A = — x,. Thus, in this case eigen-
values occur in equal and opposite pairs. It is readily
checked that this statement carries over to the corres-
ponding z ;.

'R. G. Newton, Scattering Theory of Waves and Particles
(McGraw-Hill, New York, 1966).

R. Jost and W. Kohn, Phys. Rev. 87, 977 (1952).

31. M. Gel'fand and B. M. Levitan, Izv. Akad. Nauk SSSR 15, 309
(1951) [Am. Math. Soc. Transl. 1, 253 (1956)].
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*One should remember this when one contemplates passage to the limit continuum. Since this is so special, we choose not to consider this
(A - 0), and replace ¢(X; n) by A¢(A n) in all pertinent formulas. case.

SFor example, if n,=2, one obtains
P(z) = e¥(1)(e¥(2) — 1) 2% + [eV(1)(2eM(2)— 1) — 1] 22 + eM1)+ W(2),

The reader will recognize the familiar theorem on the constancy of the
Wronskian in one of its discrete versions.

"The reader will recognize this as a discrete version of Levinson’s
theorem [N. Levinson, Phys. Rev. 75, 1445 (1949)]. There are minor
technical modifications when there are bound states at the edge of the

81t may be noted that we have sketched here an alternative proof of a
theorem of Favard [J. Favard, C.R. Acad. Sci. (Paris) 200, 2052
(1935)]. This is to the effect that given the appropriate three-term
recursion relation one can construct a spectral function. In the main
body of the text we have effectively shown the converse. Given the
spectral function, we construct the three-term recursion relation.

J. Math. Phys., Vol. 14, No. 5, May 1973



Weak quantization
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The present study shows the significance of weak quantization within the electric field dependence
of optical absorption. This phenomenon is responsible for effects which cannot be derived from
application of ordinary perturbation theory. It may play an important role in biochemical processes
which occur in electric fields. In this paper the problems of how to treat higher-order radiation
effects and how to include excited states in a molecule are mentioned.

. INTRODUCTION

In the last twenty years many semiempirical methods
have been developed for calculating the wave function of
middle-sized and large organic molecules; most of the
usual MO methods differ from one another only in de-
tails. Experience has shown that with these methods the
calculated energies of low-lying electronic levels can
be brought into reasonable agreement with the corres-
ponding experimental results, In general, calculations
of intensities have shown such great differences between
theoretical and experimental values that so far there is
no practical method which guarantees reasonable re-
sults for both energies and intensities simultaneously.
It appears impossible to predict the field dependence of
properties of large organic molecules as long as the
corresponding values of the states without the external
field are not known with sufficient accuracy.

Thus, methods based upon perturbation theory are
mostly of practical use only for solving problems of
symmetry. In regard to the uncertainty in the results,
the effort required in numerical computation of per-
turbation does not appear to be justified.

The perturbation which arises from the external field
can also be introduced directly into the Hartree—Fock
operator. Thus,the inaccuracy for weak electric fields
is reduced to that of the approximation without the ex-
ternal field, The difference between the results of the
perturbation treatment and the direct, selfconsistent
method could be used as a measure for the adaptibility
of the considered order of perturbation expansion.

However,both methods are ultimately limited to a field-
strength range which depends on the treated molecule
and decreases generally with increasing size of the
molecule. This is caused by the so-called “weak
quantization.”

This phenomenon is often disregarded—for example, the
uncritical application of second order perturbation ex-
pansion for external electric fields—but may play an
important role in biochemical processes which occur in
electric fields.

Therefore, it is useful to demonstrate the significance
of weak quantization by fundamental considerations.
This is shown by a typical case, e.g.,the electric field
dependence of optical absorption. For example, these
considerations are useful for application to problems of
solvatochromy for large organic molecules or for elec-
tric field problems in quantum biochemistry.

Il. THE SEMICLASSICAL MODEL OF

OPTICAL ABSORPTION
In order to see the effect of weak quantization one has
to examine the usual treatment of optical absorption
and to compare it with the treatment under the influ-
ence of weak quantization.

604 J. Math. Phys., Vol. 14, No. 5, May 1973

The semiclassical model describes the absorption pro-
cesses quantitatively. The probability per unit of time
dP,./dt is a measure of the intensity of the absorption
band, where the molecule undergoes a transition from
state |g) to state |a). The frequency of the absorbed
photon is w,,, which satisfies Bohr's frequency condi-
tion. In addition, the energy density is p{w,,),and the
polarization direction is defined by the unit vector e,
in this direction. A time-dependent perturbation cal-
culation yields after application of the hypervirial
theorem in dipole approximation and in the first order
of the perturbation parameter the well-known formulal:

dpP 27
_dfi = E (e, * p‘;“)(eL ‘ “Ea) 'p(""ag)'

Here p,, is the transition moment of the molecule,
which describes the transition from state |g) to state
|@) as the only molecule- specific factor in this cal-
culation.

It is defined as

Hgq =(g|Mla),

where M is the dipole moment operator.

The semiclassical model is valid, provided that condi-
tion (1) holds.

1
KL AT K =5, (1)
g dP,,/dt

This means that observation of optical absorption must
be limited to time intervals AT, which are much greater
than the reciprocal of the frequency of the absorbed
light, but on the other hand are so small that the prob-
ability of finding the molecule in the state |g) is not
considerably changed during this time.

In time-dependent theory the properties of the molecule
are specified by the Hamiltonian, which is to have a com-
plete set of eigenstates | b), with

Holb(t, b)) =ik g—tib(t,to)) =E,|b). (2)

According to the semiclassical model, the molecule is
in its ground state |g(t;¢,)) at a time ¢ before applica-
tion of the electric field at time f; and before light in-
cidence at time {; with

o=t =t <t (3)
Immediately after switching on the electric field at
time £,,this molecular state undergoes a change vari-

able with time which is dependent on the switch-on pro-
cess for the external field.

Copyright © 1973 by the American Institute of Physics 604
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The following definition is given:

A7t = the interval of time which the adiabatic ap-
proximation for state |b) describes adequate-
ly.

The following then is required for the ground state:
tp + AT8 < 1.

The field is thus switched on a sufficiently long time
before the light,in such a way that the ground state can
be treated adiabatically.

Thus, the Hamiltonian of the system becomes

with F as the field strength.
According to a fundamental axiom of quantum theory,

the ground state for ¢ with
tp <t <t

in the Schrédinger representation can be described by
[b(t, tp)) = UL, te) [ B(Egsto)) (4)

with [b) = |2).

Here U(f,%,) as a time evolution operator represents a
unitary transformation. In the further discussion this
will be assumed to be known.

In addition, the following definition is given:
AT} = the time interval in which the state |b) de-
cays because of its energy uncertainty AE,.
In principle AE, can be evaluated by (4).
Then A7% is a consequence of the uncertainty relation

AT% = ﬁ/AEb.

Further,treatment of optical absorption in the electric
field will then be determined by the following criteria:

1. the values of AT4,A7% compared with A7,
2. the values of AT4, AT% compared with A7,

Provided (5) holds true then the following can be dis-
cussed according to stationary methods:

min(ATE, ATE) > AT, (5)

If (6) holds the ground state decays during the time in-
terval of absorption;the well-known formula for calcu-
lating the transition probability loses its validity:

ATE ® AT (6)

This case can offer itself experimentally by large bond
broadening and,under extreme conditions, by a continu-
ous spectrum in a discrete spectrum range without the
external field.

Before discussing this phenomenon, it is useful to exa-
mine the external field dependence in time-independent
representation. Since the Hamiltonian in the Schrédinger
representation is explicitly time-independent, one may
expect that the external field can be treated as a time-
independent perturbation.
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In this case,two basically differerent boundary consid-
erations about the absorption process in the external
field are conceivable:

1. At time ¢ with
to=t=sty

the molecule is in the ground state of the unperturbed
Hamiltonian. Thus,under the influence of the external
field the ground state undergoes a change which differs
from that in cases without field. In contrast,all excited
states of the molecule can continue to be assumed as
eigenstates of the unperturbed Hamiltonian. This occurs,
if

AT 2> AT,

since then, during absorption,the “sudden approxima-
tion” holds good for the excited state |a) as long as it
is exposed to the electric field by light stimulation. In
this limiting case,a physical distinction is thus made
between molecular potential and perturbation potential.
If the excited state |a(t,f;)) of the molecule in the field
is evaluated in terms of the eigenstates of the unper-
turbed Hamiltonian, and if the probability amplitudes

(b, to)lalt,tL)

are calculated by use of time-dependent perturbation
theory, then it is found that for low-lying excited states
these oscillate with frequencies which are comparable
with, or larger than, the frequency w,, of the absorbed
photon.

From this it may be concluded that low excited states
satisfy the following condition:

1

ag

ATE <

Taking into account relation (1),one can see that the low-
lying excited states have to be treated in the following
way.

2. For considering optical absorption in an external
field the molecule is treated as if it continuously changes
its properties when there is a steady increase in field
strength. No physical distinction is made between mole-
cular potential and perturbation potential. Thus,all
states of the molecule undergo a change under the influ-
ence of the external field. If it is assumed that the time-
independent Schradinger equation

H(x|b) = E\(x|b)

has normalizable eigenstates |b),then the validity of
the usual formula for calculating the intensities can be
further assumed.

The electric field dependence of optical absorption can
be calculated by evaluation of the electric field depen-
dernice of the transition moment calculated with the states
of the field-dependent Schrddinger equation.
Il. WEAK QUANTIZATION
Friedrichs and Rejto2 have shown that the Schridinger
equation with the Hamiltonian

H=Hy,~—F-*M

has no solution for normalizable states; rather,the oper-
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YW(ED)
without field
, Eg Ept Ep2 energyE
" dW(E.b)
dE
with field
% Epy  Epp energyE

FIG.1. Effect of weak quantization in energy representation.

T

FIG. 2. Weak quantization as a consequence of tunnel effect.

ator for finite, arbitrarily small fields has a continuous
spectrum with —w0 < £ < w0, exactly like the continuous
unbound operator H.

This situation is denoted as “weak quantization,” since
in the energy representation for any given small field
strength the probability W(E,b) of finding an energy
value E is concentrated around values E, which in the
case

F=0

change into the originally discrete spectrum without
field. This is shown in Fig. 1, where the discrete spec-
trum without field alters into a continuous spectrum in
an external electric field:

F, =2I/(e " D). M

In the position representation the energy of the wave
function depends on the position. The hypervirial the-
orem is no longer applicable. The usual former rela-
tion for calculating the transition probability loses its
validity. A state cannot be stationary in an external
field, since the state must be normalizable. The mole-
cular state becomes a “resonance’” with an energy un-
certainty of AE, which depends on the state without the
field and on the field strength.

Physically, weak quantization is closely related to “tun-
nel” effect, since after application of an arbitrarily weak
external field, zones always appear in “outer regions”
which energetically are more favorable than the origi-
nal “potential well” necessary to bind the state. Thus,
the tunnel effect yields a possibility of roughly deter-
mining the upper field strength, which no longer per-
mits a stationary treatment of optical absorption be-
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cause of the inapplicability of the time-independent
Schrddinger equation.

Let D be the dimension of the molecule in the direction
of the field, the ionization energy of the molecule, and
e the elementary charge. Then,a simple examination of
a one-dimensional square potential well shows that the
upper limit Fg of field strength which no longer permits
stationary treatment of optical absorption as a result of
field ionization is given by (7), as shown in Fig. 2.

Field ionization occurs at last if the potentiale « F «
(D/2) at the edge of the square well is equal to the
potential barrier I. This leads to (7) for the upper limit
of F.

These are fields which can affect large organic mole-
cules in solvents. The electronic state in an external
electric field can be considered as a linear combina-
tion of a bound state and a free wavepacket.

The probability amplitude for the free wavepacket in
participating in the state increases generally with in-
creasing transmission coefficient of the potential in the
presence of the external field.

The mean value of momentum of these free states does
not become zero. For this reason,the weak quantiza-
tion gives rise to semiconductivity, which, for instance,
plays a role in the quantum biochemistry of proteins in
connection with problems of carcinogenesis. The free
states can mostly be treated classically. But what about
the bound states?

IV. STATIONARY APPROXIMATION METHODS

Taking into account weak quantization, an approxima-
tion method must be given which permits a stationary
and adiabatic treatment of the field dependence of opti-
cal absorption.

Friedrichs3 has written that the usual perturbation
theory “is misleading in first order, and fails when it is
pushed to second order.” On the other hand, Kato4 and
Titschmarsh5 have shown that usable results for the
energy can be obtained in an “approximative way” if the
calculation is limited to Hilbert space. An examination
of the errors of the matrix elements of other operators
than the Hamiltonian has yet to be made.

For field strength which are much smaller than the
estimated upper limit F, it would seem to be useful to
postulate the existence of a stationary state |5, which
can represent the actual state in reasonable agreement.

State |b,;) must satisfy the following conditions:

1. Since it should be stationary, it must be normalizable.
Furthermore, it is required that all the various |5,),
i=1,2,*- be orthonormal:

(E—,‘b_j> = 6ij-
2. For F = 0 the states |5, must change into states

Ibi) according to the Sc'hrﬁdinger equation without
the external field:

}Lnollb,» = 1b,).

3. For weak fields state |b;) must have the energy E,,
“around which W(E,b,) concentrates:

(®,|Ho—F « M[b;) =E,.

One way to satisfy these conditions is to obtain the |3,)
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by a unitary—or antiunitary—transformation
U (F)

from the corresponding states Ibi) which are solutions
of the Schrddinger equation without the field:

Furthermore, the requirements can best be realized by
using the Ritz variation principle in Hilbert space. In
this procedure,the singularity of the kernel of the Hamil-
tonian for F — 0 is neglected.

One physical consequence is the averaging of the energy
over the whole region of the wavefunction.

The usual treatment of the problem by ordinary pertur-
bation theory is equivalent to this point of view if the
variation of the zero order wavefunction is limited to
Hilbert space.

The Rayleigh—Schrddinger perturbation expansion yields
in first order the well-known result

&) <b|M hd eF|b,-)
by7) = L |b
| i > ]#Z;I Eb]—Ebi | j>

for the change of the wave function Ib,) in the external
field, where the |b,) are eigenfunctions of the unpertur-
bated Hamiltonian, ey is the unit vector in field direc-
tion.

This relation can also be obtained if the secular matrix
with the elements

®, 1115,

is diagonalized and all nondiagonal elements with & = ¢
are neglected. Thus it can be assumed that the limita-
tion to the first order of the perturbation calculation
will yield reasonable results if

1, plOIMeerldpl oy
IEbj_EbiI

forj =1

2. elements (ble *eglb ) for k = i do not become
larger than those under
consideration.

From the first condition a critical field strength can be
calculated, which will likewise be of the same order as
the upper limit F.

From this it can be concluded that if the perturbation
calculation according to the first order does not yield
reasonable results, the application of the second order
perturbation terms will not necessarily lead to an im-
provement. It may be that selective summation methods
are preferable. In any case, it is useful to analyze the
elements

(bjIM replby)

before choosing the special method of perturbation the-
ory and to take into account the possible importance of
free states.

In order to show the difficulties which are connected
with the limitation to Hilbert space, a simple example
will be treated. A particle in a one-dimensional poten-
tial is taken in an external field F. The ground state
without the field is to be described by the wavefunction

@ (%),
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Then the change in the wavefunction in first order per-
turbation expansion can be obtained from the differen-
tial equation of the Rayleigh—Schrddinger perturbation
theory:

(Ho — Ep) - 9§Xx) =X * ¢g(2) — prgg * ¢4(%).
With
AP) = 6(x) - 9y()

the following is obtained:

Gx) = Jo dz " @ (2) * [, dulu — g )02w)
+Cy [y 032z,

where ug, represents the dipole moment of the nonper-
turbed ground state. For illustration,it is sufficient to
consider the particular solutions of the following exam-
ples:

1. ¢2(x) = const. - G(x) ~ 8,

2. @2(x) =a " x40 # —2 - G(x) ~(1/(a + 2))x3,
3. 92(x) = a ' e"A** 5 G(x) ~(1/A) x,

4. 92(x) = 6(0) > G(x) =0

The first example is applicable for bound states only if
¢ is limited to a finite spatial region by a suitable
“cutoff procedure.” In the second case,the state ¢, is
bound for o < —2. However, the states remain square
integrable after application of the electric field only
for o < —8. In the third and fourth case the states re-
main bound.

Here it can be seen that the stronger the particle is
localized before perturbation,the weaker are the chan-
ges caused by the electric field in the “outer regions”
of the unperturbed wavefunction.

An examination of the matrix elements
(b I M- en I »

between an unperturbed state |b) and a free state | p)
with

P|p) =plp),

where P is the momentum operator, yields the inter-
pretable result

(bIMeep[p) ~(V,exlp)),.

The following qualitative conclusions can be drawn from
the characteristics of the Fourier transformation:

1. The smaller the region in which the electrons can
be localized before perturbation,the weaker is the par-
ticipation of free states in the perturbed state. The upper
field strength F, will then be proportionately higher.

2. The stronger the spatial structure of the unpertur-
bed wavefunction, the stronger is the structure of the
participation to free states in the perturbed state,ar-
ranged according to the momentum.

These qualitative considerations connect electron den-
sity and field effect. In general,in the ground state the
weakest change can be expected from an external elec-
tric field.

For completeness the generalized Hellmann—Feynman
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theorem® will have to be considered for taking into
account field effects in optical absorption,

The first equation is the following relation, which is
valid according to the use of the Ritz variation prin-
ciple in determining the states ij)

Ebja,.]. =(b,;|H, — F + M|b,).

This relation is differentiated by F = F * e,.

Here the following condition is to be satisfied:

db,

799
The variation in states |b_j) may be constructed only
with the states of the Hilbert space $.

If a diagonal element is differentiated, the following
equation is obtained:

dEb, — —
aF = —(0;IM * ezlb;)

The differentiation of a nondiagonal with |b;) = | g)
and ij) = |a) yields the relation

157,

Renewed differentiation finally yields

<g|M'eF|a)

(g 1M el
= = (gIM - ela) (aIM - erla) —(gIM e;lg)
g a

7 —5 (L7 éi)
+ (B E“)(dF<g> dF
This formula describes the change in the intensity res-
ponsible for a transition moment parallel to the electric

field in case there is no marked line broadening as a
result of weak quantization.

The first term on the right side reflects the direct
coupling of states | g) and [a).
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It may predominate in isolated bands,and can be meas-
ured directly. The second term is responsible for the
coupling of the states | g) and |a) with adjacent bands.
This can be seen by comparison with the corresponding
expression for perturbation calculation in first order.
It is to be expected that the second term will be impor-
tant when the band | g) — |a) is closely adjacent to an
intensive band | g2) > | ¢) with the same polarization di-
rection, which also has a large transition moment

(cIM<egla).

It is possible to develop an analogous expression for the
change of the transition moment directed perpendicular
to the external field, The term which reflects the direct
coupling of states | g) and |a) contains, instead of the
dipole moment difference in field direction, the corres-
ponding difference perpendicular to the field direction.

It may be useful to conclude that the term which does not
reflect the direct coupling of the states | g) and |a) in
any case includes the change of transition velocity and
the energy differences of both states. It seems plausible
that this term depends strongly on the participation of
free states.

V. SUMMARY

The present study shows the significance of weak quan-
tization within the electric field dependence of optical
absorption. This phenomenon is responsible for effects
which cannot be derived from application of ordinary
perturbation theory. In this context the problems of how
to treat higher-order radiation effects and how to in-
clude exited states in a molecule are mentioned.
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We construct multiplier representations of the unitary irreducible supplementary series of SOy(p,1)
on the sphere S7~! with the aid of a certain bilinear functional. The matrix elements of these
representations are shown to be the analytic continuation of the matrix elements of the principal
series. The decomposition of such representations with respect to the noncompact subgroup

SO (p —1,1) is then performed by the analytic continuation of the “overlap” functions. Furthermore,
the expansion of the relevant bilinear functional on the hyperboloid H”~! is performed, and the

connection is made with the previous decomposition.

1. INTRODUCTION

The study of the unitary irreducible representations of
the special orthogonal groups has been an area of active
research for many years now. There are many applica-
tions in physics as well as in the theory of special
functions.! In the present article we deal with the con-
nected component of the Lorentz-type orthogonal groups
504(p, 1), and with a series of representations which
have been called alternatively the supplementary, com-
plementary, or exceptional series.

Our approach is a generalization of the classic work of
Bargmann? by considering multiplier representation on
the (p — 1)-dimensional spherel S#-1, In Sec.1 we
construct representations of SOy(p, 1) as multiplier
representations on $#-1, In Sec.2 we discuss harmonic
analysis on the spheres S#-1 and then show that the
matrix elements for the most degenerate supplemen-
tary series of SO(p, 1) can be obtained by the analytic
continuation of those from the principal series.3 Then
we consider the reduction of SO(p, 1) according to the
noncompact subgroup SO(p — 1,1) for the supplementary
series by the analytic continuation of the “overlap func-
tions” obtained previously.? Finally, we consider some
expansions on the two-sheeted hyperboloid H#-1 related
to this reduction. All of the calculations are done ex-
plicitly only for the most degenerate representations.

For the general representations, one must construct
vector-valued functions for which the vector space
varies from point to point on S#-1, that is one is dealing
with vector bundles over S$P-1, If the vector space
chosen is the vector space for an irreducible represen-
tation of SO(p — 1), then our problem is equivalent to
doing harmonic analysis on5 SO(p) instead of S#-1, In
this case the necessary calculations are much more
difficult, and so we consider only scalar-valued func-
tions; however, we believe that our results are indicative
of the general problem. We mention that in the classi-
fication of the unitary irreducible representations® of
S0,(p, 1) our representations are designated by Schwarz
as DP‘2/2(01,) for p even and D?-1/2(g ) for p odd.

2. MULTIPLIER REPRESENTATIONS

The theory of multiplier representations developed by
Bargmann,? Gel'fand and Naimark? has been elaborated
into the very elegant theory of induced representations
by Mackey.8 We do not wish here to concern ourselves
with induced representations as we are mainly interested
in the supplementary series, which are obtained by
analytic continuation of induced representations. We
mention only that the principal series of SO,(p, 1) ob-
tained as multiplier representationsl:3:5 can be viewed
as induced representations.

Consider a representation of a group G by the transfor-
mation

609 J. Math. Phys., Vol. 14, No. 5, May 1973

To(g)f(Z) = nolg,g712)f(g712), (2.1)
where the functions of f/ are say well-behaved vector-
valued functions over a manifold 9, Z € M, over which
the group action (in our case transitive) is defined. The
function 1 (g, Z) is called a multiplier and (2.1) is a
multiplier representation. To insure that the operators
T(g) form a representation, 1°(g, Z) must satisfy the
multiplier condition

uo(g184, Z) = u°(gq, Z)n°(g,,8,2) (2.2)

and
wel,z) =1,

Furthermore, if we wish to describe unitary represen-
tations, we must introduce a suitable inner product

(fo,f2) = [AQUZ2)QUZK(Z, Z’ X f,(2), £,(Z' )y,

where (f,(2), f,(Z))y refers to the inner product in a
vector space V and K(Z, Z') must be a suitably chosen
symmetric kernel to assure the correct properties of an
inner product. 2(Z) is a measure on 9. Then the de-
mand for unitarity,

(2.3)

(T(g)fl, T(gz)fz) = (flyfz), (2.4)
yields the constraint
o , /dng)> (da(gz')>
be(g, Z)ue(g, 2’ )K(gZ,8Z )\ YA
=K(Z,Z"), (2.5)

where [d2(gZ)/d(Z)] is the Radon-Nikodym derivative
defined by® Q(gZ) = | dQ(2)[d(gZ)/d5(Z)]. Consider
as a special case the kernel

KZz,z2')=6(z,2"), (2.6)
where
@)= [6(z,2)f(z)dnz), (2.7)

i.e., the delta function on M, Now by the transformation
property (2. 1), we must have

, s (gz’) B ,
6(gZ,82 )<W> =6(2,2').

Then Eq. (2.5) reduces to

( an(gz)

dQ(Z)) = |uo(g,g12)|2, (2.8)

and the Hilbert space would be £2O0),

Copyright © 1973 by the American Institute of Physics 609
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We now wish to specialize to the case at hand, that is,

G = S04(p, 1) and M = S#-1, the (p — 1)-dimensional
sphere. We mention that S#-1 is isomorphic to a homo-
geneous space of SO,(#, 1) obtained in the following way:
Consider the Iwasawa decomposition'® of SO,(p, 1).

SO,(p, 1) = KAN.

where & = SO(p),A is a one-parameter group generated
by one of the boosts, and N is a (p — 1)-dimensional

Abelian group, and the subgroup MAN, where M is the
centralizer of A in K and the normalizer of N in K.
Actually M = SO(p — 1). Then

50,(p,1)/SO(p — 1)AN = SO(p)/SO(p — 1) =~ §p-1,

With this choice for G and M, the representation (2. 1)
with the inner product (2. 3) and kernel (2. 6) yields the
principal series of SO, (p, 1).

We now give a few facts concerning S#-1;
(i) The group of rigid transformations on $#-1 is SO(p),
and so with an arbitrary choice of phase we set

ph,z) =1, he SO(p)

then (2. 1) gives the quasiregular representation of SO(p)
on §#-1,

(i) The action of g on S#-1 for g € SO,(p, 1) is

g:2- g2 = (g2,z8 + g%)/(g%,28 + g0), (2.9)

where a,8 = 1,...,p, and the metric for SO,(p,1) is
taken as

)

(iii) The measure dQ(z) = d#-1z/|z?| is invariant under
the SO(p) rotations, and quasiinvariant? under SO, (p, 1).
Furthermore,

d(gz)\  [(dak)\1 e
<d9(2)> _<d€l(gz)> = (g%2® +g%)*1  (2.10)

It then follows that, for & € SO(p), Eq. (2. 5) yields

K(hz,hz') = K(z,2’'), h < SO(p). (2.11)
so that K(z,2’) must be of the form K(z-z’). In accor-

dance with the representations of the principal seriesl:3
5,11

no(g,g71z) = (g-10 4328 + g10)0, (2.12)

Such representations are irreducible when 0 is not an
integer; when o is a positive (negative) integer, there is
an invariant subspace consisting of certain polynomials
(factor space with respect to the polynomials), respec-
tively.1

Putting Egs. (2. 10) and (2. 12) into (2.5) yields the func-
tional equation

(g0g28 + g0,)0-#+1(g0yz’8 + g0 )-0-P+1K(gz,gz’)
=Kl(z,2z').
We make the ansatz: A solution to (2.13) is of the form

(2.13)

K@z,2')=C(l—2-2")* = 2°2C(z — 2")2A, (2. 14)
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In fact, since the action is transitive (2. 14) constitutes
the most general solution. Considered as a generalized
functionl2 K(z, z’) given by (2. 14) is analytic in A ex-
cept for simple poles at

)\=_[(p_1)/2]_k3 B=0,1,---,

We thus concern ourselves with two cases:

(1) X = — [(p — 1)/2] — k, the regular case. Then (2.13)
can be satisfied only if \ =—0 —p + 1=—G —p + 1:
hence o is real.

(2) A =— [(p — 1)/2] — k, the singular case.

For now we are only interested in the case # = 0. Then
we find (see Appendix A)

(27)-1/2
re—1)/2)
and Eq. (2. 13) is only satisfied if

Res(1 — 2z °z’)>»\ Nep-1/2 = 65Ph(z, z/),

(2.15)

c+T=—(p~-—1)
or
o=—[(p—1)/2)+ip, p real

3. HARMONIC ANALYSIS ON sP—1

Let D denote the space of infinitely differentiable
scalar-valued functions on S?-1, The completion of D
with respect to the norm induced by the inner product

ARSI ADIAD

yields the Hilbert space £2(S?-1), A complete ortho-
normal basis in £2(S#-1) is given by the homogeneous
harmonic polynomialsl3

(3.1)

p=2

i/2
Y6y 1yeers ) =N, jEIz c:;;’

- -in,0
by (cosb,, ) sin’i6;, e "1,

(3.2)

where the subscript N denotes (#,_;,...,7,), N, is given
by

1 #2 n;+(5-1)/
= —— 4 i g\ 2
N, N jgl I, +3/2)2

y (n;,1 +7j/2)Cn;, —n; + 1\172 3.3)
70, +n; +j) !
and the spherical coordinates for S?-1 have been used:
21 0=6,<2m,
22 = ginB, ;- * +sinf, cosé,,
0=6;<m i=2,,..,p—1,

8ind,_;° - sinf,

2771 = ging,_; cosf,_,,

z# = cosf, ;. (3.4)
Since we wish to describe the supplementary series
arising from an inner product of the form (2. 3), we are
interested in the generalized function (2. 14). It is
regular for ¢ < — (p — 1)/2, and for — (p — 1)/2< 0 can
be given meaning in terms of its regularization.12 In
Appendix A the following expansion will be derived:
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7%-V/2 0 [(p — 1)/2] — o)
2°T(o +p — 1)

(1 —2z .z')—o-p+1 —

X T Tn+o+p—1) v, )7, ).

N I'(n — o) 8.5)

Again it is emphasized that this expansion has meaning
as a generalized function even for o > — (p — 1)/2.

The sum ), means the summation of » ;j over the range
n,1=0,1,...,mn,=0,.,.,n,,,fori=2,...,p -2,
andn; =—1n,,...,n,, Wewillusen =n,_, andl =2, ,.
Then the inner product (2. 3) for scalar-valued func-
tions can be written as

_ dQ)dQ(z’) - ,
(f1f2)o = Cfm f1@)f5(2") (3.6a)
=%}X”(U)(f1,YN)(YN,f2), (3. 6b)
where C is fixed by normalizing the kernel
20T o)
€= P—o — (p— 1)/2)a%-1/2 3.7
and
2,0) = +p—1),/(—0), (3.8)

where a, = I'(a + n)/T'(a) is Pochhammer's symbol. We
find some useful properties of the function A, (0): It has
the asymptotic behavior

x, ) " n2o+p-1, (3.9)
and it is positive definite when

F'e+p—1+n)/Tr—0)>0, (3.10)
In fact, (3. 10) can be valid only if

—(p—1<o<0. (3.11)

Thus for ¢ in the range — (p — 1)< o= — (p — 1)/2 we
have a positive definite bilinear form with

IFI2 = (f,f)q

=§;>«,,(o)|(¥”,f)l2 szN‘, [(Yy, /)12 = lifl2 < w,

(3.12)

Many of the properties of positive definite bilinear
forms are best described by introducing a bounded
Hermitian operator.14 In fact, such an operator is used
to show the equivalence between representations with

o replaced by — 0 — p + 1. It is known14.15 that with
every positive definite bilinear form (f;,f,), one can
associate a bounded Hermitian operator A° such that

(flifz)o = (flaAafz)y - (p - 1) <o<— (p - 1)/2,

or
fz’)
ANe = Jaoe) T (3.13)
Putting f (z) = Y, (z) and using (3. 5), we find
A%Y,(2) = A, ()Y, (2). (3. 14)

Thus the generalized spherical harmonics are eigen-
functions of A° with eigenvalues A, (0). But from (3.9)
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lim 2, (@) >0 foro<— (p—1)/2

n—r

and such a condition characterizes a compact1® opera-
tor.15

Theorem (Riesz): A bounded linear operator is
compact if and only if it maps every weakly converging
sequence into a strongly converging sequence.

Hence, there exist sequences of £2(S?-1) functions
which converge (strong) with respect to the c-norm
but do not converge (strong) in £2(5#-1), and so £(S#-1)
is not closed with respect to the o-norm. The closure,
however, yields a Hilbert space which we denote by
3y

An orthonormal basis in 3, can be easily constructed
from Eq. (3. 6b). Defining

en(@) = [1/n,0)]Y, @),

n,0) =nl—0—p +1)=r,0)]1/2, (3.15)
we obtain the orthonormality relation
eyney), =0(N,N') = Oy " O _im (3.16)
and the completeness relation
(fl;fz)o =§(f1,e1v)c(e~,f2)o- (3.17)

In fact, these relations hold also for the principal series,
i.e.,0 = —[(p — 1)/2] + ip since then

([(p — 1)/2] + ip),
{(p — 1)/2]—ip),’

which is nothing more than a phase factor and the e
form a complete orthornormal basis in £2(S#-1) for
o=—[(p—1)/2] +ip,

Before closing this section, we notice the analytic struc-
ture of the basis functions ey as a function of 0. There
are branch points at0 = 0,1,..., 27—l ando =—p + 1,
~Pye..y—n—p + 2, The branch cuts are chosen
according to Fig. 1(a).

A [(p— 1)/2] +4dp) =

P2 -P4 -P -p4 o 1 2 3 4 ]

(la)

~nzp -nzp+l

(iv)

FIG.1. (a) branch cuts of e (0) in complex ¢ plane. (b) branch cuts
of Ve, N(g) in complex o plane. See text for ranges.
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4. THE REPRESENTATION FUNCTIONS

The representation functions or matrix elements for
S04 (p, 1) have been discussed previously,3.5 and for
the most degenerate representation of the principal
series an explicit expression® was given for matrix
elements of a member of the double coset SO(p)\SO
(p,1)/SO(p). We shall denote the matrix elements as

(Yy,, To()Yy) = TS y(8) (4.1a)
and with respect to the basis e
ey, To(g)ey) = VS y(2). 4. 1)
Clearly, for the principal series
N, (©0)
Vi n(&) =—= TS 4(&) (4.2)
N' N 17”(0,) N',N

since 7,(0) = n;1 (o). Since T, yis an entire function of
0, the analytic structure of V§, y(g) in ¢ is determined
solely by 7,,.(0)/7,(0) and we find that Vg, ,(g) is an
analytic function of ¢ in the cut plane, where the cuts
are taken as shown in Fig. 1b. The branch points of

V¢, y(g)occurato =n,,...,n, —1ando =—n, —
p+1,...,—n,—p + 2 where n,(n.) means the greater
(lesser) of n’ or n, respectively. Hence, we can analy-
tically continue V%, x(g) to the range — (p — 1) < 0 < 0,
and by applying Eq. (3.6b) to (e ., T9(g)e ) ,, where
—(p —1)< o< 0,we arrive at

Theorem 1: The multiplier representation (—p + 1<
o < 0) given by (2, 1) with the prescribed action (2, 9) and
(2.12) for functions in £2(S?-1) yields a unitary irre-
ducible representation of SOy(p, 1) in 3¢, which is equiva-
lent to the analytic continuation of the principal series
to the range —p + 1< ¢ <0,

As mentioned previously, the equivalence of the repre-
sentations4 under 0 - — 0 —p + 1 is determined by
the operator A, First, consider the representation
adjoint to T°(g). This representation operates in 7, the
space of antilinear functionals on D. By restricting this
representation to ® and manipulating the multiplier

(2. 12) we obtain

(T-5-2+1(g)fy, f5) = (f1, T°(g 1)), 4.3)
Then, in the case of the supplementary series in the
range — (p — 1) < 0 < — (p — 1)/2, we can write

(To(g 1)1, f3)g = (f1, (A0)1T-0-241(g)A%,) .. (4.4)

It is noted by Eq. (3. 14) that indeed A¢ is well defined
and possesses an inverse for all o exceptoc =—p + 1 —
k,+ B, where k is a nonnegative integer. Combining

Eq. (4.4) with the unitarity condition (2, 4), one finds

(f1, T(&)f3) g = (fr, (A)1T-0-2+1(g)A%f,) . (4.5)
Since this holds for all fc 3, we obtain
A°To(g) = T-o-P+1(g)As. 4.6)

We note that for — (p — 1)< o < — (p — 1)/2 the opera-
tor A° is one-to-one and compact and (A°)-1 is unbound-
ed, and since A;1(6) = A, (—0 —p + 1),{A%)1 = A-o-p+1
which is compact for — (p — 1)/2< 0, < 0, By taking
Eq. (4. 6) between basis states in 3¢, we find

Ao @) VGy(g) =2, (@) Vgt~ 1{g). 4.7
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It suffices to discuss only the interval — (p + 1)< 0 < —
(# — 1)/2 where the generalized function (3.86) is regular,
The operator A2-#+1 corresponds to the generalized
function (1 — 2z -z')9,

Note Added in Proof: The statement of Theorem 1
deserves a comment. It was not stated explicitly in the
theorem but is made explicit in the calculation as well
as in the conclusion that the analytic continuation of the
representations refers to analytic continuation in the
weak sense, i.e., in terms of the matrix elements and
not in terms of analytic continuation of operators. Also,
I would like to add the following reference where the
matrix elements of the supplementary series of the
Lorentz group (SO(3, 1)) were calculated: S.Strtm, Ark.
Fys. 38, 373 (1968).

5. THE DECOMPOSITION SO, (p, 1) > SO, (p—1, 1)

Previously this reduction has been obtained for the
most degenerate representations of the principal series.
417 In terms of the V functions defined in Sec, 4, the
reduction formula reads

N0) 2

w (
V?v'u(h)=w 1@1]{; dV—nl—V)

K9, (v, 1,n)
nw) 7
x VDA (gygoy 1,m), ke SO(p—1,1), .

(5.1)

where the “overlap” functions are given explicitly by
(B2), and it should be understood that the N's in the V
function of the integrand are of one lower dimension,
ie., (2, 9,...,70)

For convenience we rewrite (5. 1) with the aid of the

symmetry relation (B3) as

—i,0,) [1+ (= 1)p-ten'-t’] I
M, ,) 2 o b

77,, (Op..l)
1
nn:(Up-l)

Vibn (k) =

XK PP Mo, 1,0 )WV R WK P, ,),  (5.2)

where the contour ¢ runs from — [(p — 2)/2] — iw to

— [(p — 2)/2] + iw. Notice the selection rule for these
totally symmetric representations owing to the factor
1+ (— 1)»-t+#'-l" Now both sides of Eq. (5.2) are analy-
tic functions of 0, and hence can be analytically con-
tinued to the supplementary series.18 Upon doing so,
some of the poles of the K functions may cause us to
deform the integration contour. If this occurs, such poles
give rise to a Regge-like contribution to (5.2). The
analytic structure of the functions ¥V and n have been
given previously; they have no singularities for o pin

the supplementary series. Also, the analytic structure of
the K functions was given in Ref. 4; however, we repeat

it here for convenience. The functions K;#(0,_;, +,7)

have moving poles at n — I even,
g =——op+2k—(p-2)

=0,— 2k,

p-1

and at » — [ odd,
Opg=—0,+2 +1—(p—2)

=0, — (2 +1). (5.3)

The moving poles of the integrand are thus shown in
Fig. 2 along with the integration contour. There are
other fixed singularities in the complexo,_, plane, but
they do not interfere with either the migration of the
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moving poles or the path of integration. Then upon con-
tinuation of ¢, to the range — (f T 1)< 0,<— (p —1)/2,
we find only the poles of K;7#7°" (@, 4, +,n) will cross
the integration path. Denoting 0% _, as these poles, the
contour must be deformed when

ok, =0, tk+1=—(p—2)/2
or when
o,=—k—p/2. (5.4)

The deformed contour can then be replaced by the ori-
ginal contour plus the pole contributions according to

ORR0,

(5.5)

Notice the poles cross the integration path in pairs due
to the symmetry of the K functionunder o, ; > —0, 4
—p + 2. The results of the contribution from pole terms
for various ranges of the supplementary series is
summarized in Table I. Calculating the pole contribu-
tions by Cauchy's formula and inserting into Eq. (5. 2),
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- —— . ——— — ——— e — — -~ ———— e — ——— — —

FIG. 2. The solid vertical line indicates the integration contour, the
dotted vertical line is the principal series of SOy(p, 1), and the solid
horizontal line is the supplementary series s ... poles of K} ?(¢ -1 1 n),

x...poles of K:’P(op_l, 1,n)

TABLE I.
Range of 0, Contributing poles
—p/250ﬁ<—(p—1)/2 —(p—1/2<0,= (p—2)/2 none
—p/2—1=0,<—p/2 —(p—-1/2<0,=—(p—4)/2 0
—p/2—-2=0,<—p/2—1 —(p—4/2<0,=—(p—6)/2 0,1
~p/2—k=0,<—p/2~k+1 —(p—2)/2<0,=—(p—2—2)/2 0,1,...,k—1
’ S podd....... —%} : :
—(p—1) <o, <—(p—1)+{° <0,<0 0,1,... —3)/2
0 ) % o ) {1 ...... peven...... -1 T T ’{(p 3)/}

we obtain

N, ,) [1 + (— 1)r-isn’-] n,0,_1) o pel o
%p  (h)=—i-2_2 do, g ——22 VR (WK 7P P 0,0, 1,n)K] 20, 4, 1,7)
#' N'a N 77,,(%) 9 f »-1 771'(%4) NN 1 p-17 1 p-10 4

{a,-p/2}’
Ao b o, +k+1 -0,-p+1,k Bsl
+ 97 nn( P)[l + (— 1)n-l+n'-ll] E nl( 4 ) ’of P K‘;P (Up +k + 1, n)VOIP+ (h), (5. 6)
M,(0,) =0 Mo, tk+1) A N'N

where {a}’ means the smallest integer strictly less than
a. The residue functions W2,* have been calculated in
Appendix B. We mention that at the point 0, = — (p —
1)/2 — & the kth pole does not contribute due to the
vanishing of the normalization constant N, , ,,,. This
is indicated in the table. ’

Notice also that the residue functions (B6) vanish when
n — 1 and k are of opposite parity, which simply reflects
the fact that the K functions have no poles then as can
be seen from (5. 3). This leads to the question of the
multiplicities occurring in the decomposition. For the
principal series of SO,(p, 1), there are two copies of
each principal series of SO4(p — 1, 1) occurring in the
reduction.417 This can be understood in several ways.
Upon mapping S#-1 on to H#-1 [two-sheeted (p — 1)-
dimensional hyperboloid] we have two quasiregular re-
presentations of SO (p — 1,1). Another way to under-
stand this is to consider separately functions which are
either even or odd under 6, ; — 6, ; — 7. Under SO,
(p — 1, 1) transformations this parity is preserved;
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hence, there are two copies of the quasiregular repre-
sentation. The Hilbert space splits as the direct sum
J =3 o 3(), However, when we continue to the
supplementary series the additional pole terms contri-
bute either to the even functions or to the odd functions
but not both; hence, these representations appear with
multiplicity one. The new Hilbert space X, again splits
according to 3¢, = J§*? & 3§, but now both 3¢ §*) and
3$-) can have discrete contributions depending on the
situation. For example, considering o, to be close
enough to — (p — 1) to maximize the pole contributions,
we find for SO4(3, 1) and SO,(4, 1) onl§' the £ = 0 term
contributes and only in the space 3¢{*) (see also Sec. 6
as well as Ref. 18), whereas for SO(5, 1) and SO (6, 1)
the # = 0 term contributes to J¢§*) and the £ = 1 term
to X g') and so on for the hi%her groups with the (even-
odd) poles contributing to :Ico*), respectively. We sum-
marize our results as follows:

Theorvem 2: The supplementary series of represen-
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tations of SOy(p,1) with— (p — 1)< 0,<— (p —1)/2 as
described in Theorem 1 decompose into a direct integral
of representations of the most degenerate principal
series of SO (# — 1, 1) with multiplicity two plus the
direct sum of #-singleton representations of the supple-
mentary series of SOy(p — 1,1) witho, , =0, +n
whenever 0, is as indicated by Table ITwithn=1,...,

k +1,...{(p — 3)/2}. These latter representations oceur
with multiplicity one.

6. HARMONIC ANALYSIS ON THE
HYPERBOLOID HP—!

In his investigation of the decomposition of the supple-
mentary series of the Lorentz group [i.e., SO,(3.1) D
S0,(2, 1)}, Mukundal® used a bilinear form on the two-
sheeted hyperboloid and expanded the kernel in terms
of harmonic functions. In this section we present an
analogous discussion for the more general case of the
groups SO, (P, 1) and hyperboloids H#-1. Of course

the difficulties of harmonic analysis on noncompact
manifolds such as H?-1 are well known; however, due
to the pioneering work of Gel'fand and his collaborators,
14 guch difficulties have been overcome. Qur purpose
then is to write down a Plancherel—-Parseval formula
for the hyperboloid H#-1 analogous to Eqgs. (3. 6b) and
(3.17) for the sphere S#-1,

We begin by considering the unitary map of S#-1 onto

H?-1, The (p — 1)-dimensional two-sheeted hyperboloid

H?-1 ig given in spherical coordinates by

19 = + cosha,

nl = sinha sind,_,---sinf;, 0= 6, < 27,

n? = sinha sind, y+--cosb,, 0=6;<mi=2,...,p— 2
n#-1 = sinha cosb, ,, 0=a<wm, (6.1)

where + refers to the (upper—lower) sheet of H#-1,
The mapping of S#-1 onto H?-1 is given by

—1/zp, wni=2i/zb, i=2,...,p—1
or
cosé, , = 0<6,,=7/2 0=a<w
p-1 COShﬂ’ -1 ’ ]
cosf, ; =— 12< 0, ,=m, 0>a=0
-1 cosha’ 1= ’
sinf, , = tanha, 0=6,,<7 0=a<w. (6.2)
The functions on S#-1 are mapped as follows:
f@)— cosha-of,(n), 0=6,,=1/2, 6.3)
f(z) > cosha-of,(m), w/2<6,,<m, )

where the 1 or 2 denotes the upper or lower sheet, res-
pectively. Following Mukunda, we define functlons ft (n)
which are even or odd under 9 2T =0,

(f1 £f2)/2. Under (6.2) the measure dQ(z) becomes
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where dQ(n) = d?-13/ |n,|. Combining Egs. (6.2) and
(6. 4) with (3, 6a), we obtain

(£,8),
= cf demydam)[f,mg, 0K 0 -n) + £.(mgn K @)
(6.5)
where
K, () = [(r — Dope & (x + 1-ompe1)/2,

x = cosha cosha’ — sinha sinha’ cosg,
cosp = coset,_2 cos(-)'p_2 + e
+ sinf, , sinb’, , - - sinf; siné’;.

The expansion of XK, (x) in a harmonic series can be
performed by using the expansion formulas obtained by
Vilenkin? using Gel'fand's method of horospheres,14
The details are given in Appendix A. The result is

D(—o — (p — 1)/2)m (»-3V/2
20I'c +p — 1)
X ?_fom dv T + 5p +iv)To + 5p —iv)

K,(x) =

x {coshrv ¥ sinnfo + (p — 1)/2)]} ¢, y(MP, x(n")

(6.6)
for —p/2< o < — (p — 1)/2, where the ¢, () have
been given previously4
¢,,x () = N, (sinha)-(»-3¥2 P{3 }73)(? (cosha)
XYy (6,25 0+58y)
N, =[ITGv + I + (p — 2)/2)|2(vsinhmv)/n]1/2, 6.7
The inner product (6. 5) then becomes
(f,8)e =2 [ v 2,007, 9,806 0,3:8.)
6.8)

+ 2 fav 2\ 0)(f 0, W)@y N8
N

for —p/2< o < — (p — 1)/2, where
I'(—o)

___-r(, +£+iu)r<o +_”i_w>

T +p —1) 2 2

p—1
)

It follows immediately that for— (p — 1) < o < —

(p — 1)/2, rt(o) > 0, using Stirling's formula, we see
that

)\3(0') =

X [coshw ¥ sinw (o +

A:0) =25 y2orp1550 (6. 9)

for 0 < — (p — 1)/2; hence (6. 8) converges and £2(H) is
dense in Jz. Now Eqgs. (6.6) and (6. 8) are defined only
for o in the range — p/2< ¢ < — (p — 1)/2. To define
the kernel (6. 6) for ¢ < — p/2, we must analytically
continue the integrand of (6. 6) in 6. Again when doing
so we must deform the contour since the I" functions
exhibit poles when iv = ¥ (0 + 3p + k). These poles will
collide with the contourl? when ¢ = — 3p — £, Actually
owing to the factor coshiv ¥ sinr[o + (p — 1)/2] half of

dQ(z) - du(n)(1/ cosha)?-1, (6.4)  the poles are quenched. The even poles (¢ even) appear
1 ina}{o) and the odd poles in X; (o). Hence, we get for o,
in the entire range — (p — 1) o<~ (p—1)2,
00
(,8)e =D Jy av A5@NF.s 00,00 0108
{-0 —P/Z} (— k— ‘ - O')Z;(O’ +p— l)k [r(_ c—k—1+ l)(.f+ o+k+1, N)(lpo+k+1N'g+)
+2reo) kezeen EIT(—2 —p +1—k)
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APIINCEHOIVR RIS
{-GP-P/Z}'O(—‘ k— %P - U)E +p— l)k-zr(’— 6—k—1+ l)(f—’wa+k+ 1,N)(d/o+k+ 1,N’g—)
+2l0) % X (6.10)
k odd RIT(—20—p +1—F)

where {a},,{a}, denote greatest even (0odd) integer
strictly less than a respectively, and

s - -[2+(p-3),
Y .» n(m) = (sinha)-(2 3)/2 Po+,:+fp_1§?]2 (cosha)
XYy(0,.050.0,8p)

It can be readily verified that (6. 10) is a positive definite
bilinear form. The question of the orthogonality of the
functions ¥,  for different # and orthogonality between
¥y,pn and @, v is somewhat difficult since Y, ,, y no
longer exhibits the usual oscillatory behavior. The ex-
pression (6. 10) converges even though the functions

Yy .1y (M) are more singular at cosha — « than ¢, , ).
This is so since cosha® ¥, , y converges in £2(H?-1),
and from (6. 3) so does cosha=°f,. As a result except
for the points ¢ = — 3p — B, £2(H#-1) is dense in both
Jei, At the points o =3p — &

v—>0
Az 0)—> v

hence, £2(H#-1) is not dense in 33(, /). For a more
thorough-going discussion of the Hilbert space struc-
ture the reader is referred to Mukunda.18

We remark that the integrands in (6. 10) can be rewritten
in terms of the o-norms analogous to (3. 17) by intro-
ducing

ety =[r:0)]12¢, 5. (6.11)
These functions then form an orthonormal subset in
Jct, but are not complete when ¢ < — p/2 owing to the
contribution from the discrete terms in (6. 10) [for
—(p +1)/2=0<—p/2, e;  is complete in ¢ ]. Also
the e% , are a complete orthonormal basis for the prin-
cipal series {o = — [(p — 1)/2] + ip} since then (o)
reduces to a phase factor.

The connection between the approach in this section
and the approach in Sec.5 can be made by noticing the
relationship between the two functions A (o) and A} (@).
By making use of the unitary transformation between
the representations on the sphere and on the hyper-
boloid, one finds

ATO)8, OV — ) =20 X, O)KXY', 7, n)KS(v, T,m). (6.12)

Using (6. 12) and the completeness property?

¥ [dv Ky, 7,0 )K$(w, 1,n) = B0 ns (6.13)
-

one finds that the matrix elements (e y,, T9(k)e ), for
ke SOy(p ~ 1,1) and ¢ in the supplementary series with
—p/2=0<— (p — 1)/2 gives exactly that given by

Eq. (5. 1) when 0 is analytically continued to the above
mentioned range.

CONCLUSION

We have used the generalized function (1 — 2z -z')* on
the (p — 1)-dimensional sphere to discuss representa-
tions of SO4(p,1). In particular, the supplementary
series arises naturally while the principal series cor-
responds to the singular point A = — (p — 1)/2. It re-
mains to investigate the remaining singular points and

J. Math. Phys., Vol. 14, No. 5, May 1973

their possible connection with integer point represen-
tations. All in all, this procedure gives a unified way of
handling the most degenerate representationsof SO,(p, 1)
and possibly the general representations. At this point
it is worth mentioning that the general groups SOO(p, 1)
have recently become of interest in physics in connec-
tion with the dual resonance models29 in a way closely
related to the multiplier representations we have used.

It is seen that the matrix elements for the supplemen-
tary series are the analytic continuation of those from
the principal series. This allows us to discuss the de-
composition according to the noncompact subgroup
Soo(p — 1, 1) by the method of analytic continuation and
it is shown to be consistent with the representations on
the hyperboloid H#-1, While this decomposition has
been discussed previously for p = 3, our results contain
as a special case the decomposition of the matrix ele-
ments which has not been given.

The question of applying these methods to the general
representations is of foremost interest. Here we are
concerned with representations on the SO(p) group mani-
fold with the basis vectors given by the SO{p) matrix
elements labeled by the usual Gel'fand—Tsetlin scheme,
Owing to the usual decomposition of SO,(p, 1) and the
splitting of the Haar measure £(S0(p)) = Q(S#-1)
Q(SO(p — 1)), the multipliers can be written as only
multipliers® on $#-1, For this reason we believe our
results are somewhat indicative of the general pattern,
modulo the appearance of certain discrete representa-
tions. This is analogous to what is sometimes referred
to as “complications due to spin.” Nonetheless, the
general problem is quite formidable. One must know
the analytic structure of the general “overlap” func-
tions which itself presupposes the decomposition of

the regular representation of SO,(p — 1, 1). Moreover,
the factorization of the residues is now not at all trivial
as it is in the most degenerate case. It is hoped that
definite answers can be given to these problems in the
future,

APPENDIX A: EXPANSIONS ON SPHERES AND
HYPERBOLOIDS

We derive the expression (3.5). Expand (1 — x)-r ina
Fourier Gegenbauer series:

o0
(1—x)r = nZ=>0 a,(y)C{P-2/2(x),
with

1
an(‘y) = Nﬁ f_l dx(1— x)v(1 — xz)(p-s)/zcrgrz)/z(x). (A2)

(A1)

This integral can be performed for Rey < (p — 1)/2
with the aid of formula 7.311. 3 of Ref, 21, yielding

a,(y)

_ 22-2-v[n + (p — 2)/2]T(p — 2)/2)T((p — 1)/2 — 7)(3),
7120 +p — 1 — 4) ’

(A3)
Although the integral can be performed only for Rey <

(p — 1)/2, Eq. (A3) yields for a,(y) an analytic function
in the complex y plane except for simple poles at y =

[(p — 1)/2] + k; hence, the series (A1) has meaning as a
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generalized function for all y except at these poles,
Setting x =z+2’, y =0 + p — 1 and using the addition
theorem for generalized spherical harmonics!3
C’Sp-z)/Z(z ez’)

o (p-1)/2

ST+ G — 2 2 — 27D %

Yy@)¥yGe), (A4)

we readily obtain expression (3.5). It should be under-
stood that the sum on N means the sum over all z;, ex-
cept n,_;, over the ranges mentioned in the text.

For an analogous expansion on the hyperboloid, H#-1,
we use the expressions obtained by Vilenkin! using the
Gel'fand-Graev transforml4:

( 1)(p-2)72

p even: f(cosha) = YRR T {dax,_1

S

~ 22 (-V2T( + (p— 1)/2)TA —p +2—0, )T(0, , — )
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' +p—2)
p-1 -(p-3)/2
X ——F(cr-I,_])—_a(c"'l)P°P-l*(p'3)/2 (cosha); (Aba)
 1)(p-3)2
P odd: f(COShO!) = mz—(; l dUP__l
T +p—2)
»r-1 -(p-3)/2
x e cotnop_la(op_l)Popfl+(P_3)/2 (cosha),
p-1 (A5b)
with the inversion formula
_ [ - -(-3),
alo) = [ flx)(x2 — 1)0-3va p 23V2 () (A6)

The contour ¢ runs from — (p — 2)/2 — iw to — (p — 2)/2
+ éo. We have two integrals to perform one with f,(x) =
(x — 1)*, the other with f,(x) = (x + 1), In the first

case (A6) can be performed using formula 7.134, 2 of
Ref. 21 yielding

1= T2

sinm[o,_, + (p — 3)/2]. (A7)

The second integral can be done with the aid of formula 7. 135. 3 of Ref, 21, giving after some algebraic manipulations,

2P+ (p—1)/2)TE, , ~ M2 —p +2—0

@2 = al'(— )

Combining (A7) and (A8) to form a, = a; *a, and setting
A=-—0—p + 1,we have

—~T(0 —(p—1)/2T0 +ip—iv)
20+(p-1D/230(c + p — 1)
X (o + ip + ivH{costmv ¥ sinn[o + (p — 1)/2]}

a, =

(A9)

witho, , =—[(p — 2)/2] + iv. Strictly speaking, the
above integrals can be performed only with the restric-
tions ¢ > — p/2,0 < — (p — 1)/ 2; however, (A9) describes
a function which is analytic in ¢ except for poles at
k—(p—1)/2 and— % — (p/2) +iv. Thus the integrals
can be given meaning in terms of their analytic continua-
tion. To write the expansions in terms of the “spherical”
functions on the hyperboloid, we make use of the addition
theorem for the Legendre functions derived by Vilenkin?:

~(p-3)2 _,-(p-3)/2
P[5z (cosha)

sinha
— 3
= 2“"5’/21"(”—2——)1"(0 +1)I(=p +3—0)

X

(sinha)-(#-3Y2 (ginhq’)-(#-3¥2
(p—3+20)
0 I'—o—p +3~1)

-[(p-3)/21 -1
x Po+(p—3)/2

s

1

(cosha)

x PLE3YA (cosha)C P22 (cosp) (A10)
with cosha = cosha cosha’ — sinha sinha’ cosf. Doing
some algebra and using (A4), we find that the left-hand
side of (A10) becomes for even p

2 Co-1)/2q (p-2)/2 (— 1) (p-2)/2

iv

Tlo, , +1) L - ,
X P(O‘P_l p— 2) %1 ¢.,,N(71)¢U,N(17 )
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=Y sim[x» + (p — 1)/2].

(A8)
and for odd p
9 (p-1)/24 (p-z)/2(__ 1)(p-3)/2 T L 1)
cothpy —— 21 7
v Flo,,+p—2)
X2 oMy ). (ALD)
Remembering that 0, ; =— [(p — 2)/2] + iv, we change

the contour integral in (A5) to an integral over v from
0 to © and make use of the relations

ImE(OP'I +p—2) _ T, ,+p~ 2)’
r,.,) Fo,,+1)
T, +p—2) . o,y +p—2)

Co,, T, ,+1)

p odd:

peven: R (A12)

to obtain the expansion formulas (A5) as
flx) = — 20-1/27p-1/2 % f0°°du a(w)p, yd, y(m'), (A13)
N

where
x = cosha cosha’ — sinha sinha’ cosg,

cosp = cosf, 5 €086, 5 * +°*

+ sind,_, sinb,_, - - - sinb; sinéj.

This together with the Fourier coefficients (A9) then
yields the expansion for the kernel X, given by Eq. (6.6).

It was mentioned previously that both the generalized
functions (1 — z -z’)* and (n -7’ — 1)* (here 1y, 7, > 0)
are singular when X = [(p — 1)/2]—k oro =—[(p — 1)/
2] + k. Considering only the case # = 0 and using the
completeness of the spherical harmonics in Eq. (3. 5),
one easily obtains Eq. (2. 15). Similarly using (AT),
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(A13) and the completeness of the functions ¢, (1), we
obtain
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APPENDIX B: THE RESIDUE FUNCTIONS
The residue functions are defined by

27) (#-1/2 “Opprlk _ i +o,+p—1+k
Resn-n"— UM, __ (12 =£f‘()(—1’-—iﬁ 8hyP(n,n'). Wa ap-r’-{wT-k-pu 1 t0, P )
(A14) x K;"IJ"‘”’1 ©,-1s1,m), (B1)
Note (7’ + 1)* is regular,
where the K functions were obtained in Ref. 4:
JFNOP_lN,' Wn-/2) (— 1)1 T + [(p — 2)/2] — j)

—op—p+1 -
Kl (013'1’ l’n) 21+(P~2)/2I‘(l + (p — 2)/2) j=0

P(n—1—0, 4 +0,+1)/2]—IT(e—~1+0, 4 +0,+p—1)/2]—j)

I(((n— 1+ 1)/2]—j)

where the K function on the lower sheet is related by

Ko(v,2,n) = ( 1)-1K9(v, 1,n). (B3)

The relevant poles occur in I'([(n — 1 + 0,4 +0, +p —
1)/2] — j). The residues of these poles can be found by
analyzing the cases n — [ even and odd separately and

“T(n—1+ 22— IT(ln + 0, + p— /2] - NT((n + 0, + p)/2] ) (B2)
r
We find
0, t0, +p—1—n~—1| \
Resl“< p-l " P > —) Op_1=~0p-p+1
_  DH1 + 1)tk 1) (n-1+R)/2-§ . (®5)

using

Tz + i) = (~ 1)l — 2)I'(z)/T(1 —z — ), i integer.

(B4)

~o-p+1.k__

M((—n—1—k)/2]+j+1)

Inserting (B5) into (B1) and inverting some I functions
we obtain explicitly

(= 1)-EW2[1 4 = RiRVIN, L NT 0 + [0 — 2)/2] = )T — 1 +p + £)/2] +0,)

W,

X 4F3

~n—(p—4)/2, —oq,

nt T 2+ 0-D2T( + (p— 2)/2)T (e — 1 + 1)/2T(n — 1 + 2)/2)T(n + 0, + p — 1/2)T{(n + 0, + p)/2)T(L — bn — 1 — £)/2)

——1—-1)/2,—a—-0/2,—0,—p—3+n)/2,— (0, +p—2+n)/2
—n—1l+h+p+2)/2,—n—1—R)Y2+1

;1. (B6)
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The problem of determining the wavefunction is solved for the boson Bogoliubov transformation.
The method of series expansion is applied to derive the general expression for the coefficients which
connect the new Fock states of an arbitrary number of quasiparticles with the states before the

transformation.

1. INTRODUCTION

The usefulness of the method of Bogoliubov transforma-
tions has manifested itself particularly in the theoreti-
cal treatments of superfluidity! and superconductivity.?2
In such a transformation the new boson annihilation
operator b, and creation operator 4} of momentum

k(= 0), satisfying the commutation relations, i.e.,

[bk’ bk’] = [bI’ b{’] =0,

are related to the boson annihilation operator g, and
creation operator af by

[bk’ bk'] = bkkl and (1. 1)

- f — oTq. o~T
by =ugay, + vpaly =eTage

(1.2)
bl =uyaf + vpay =eTafe T
with
=~xlafa’y —apa )=~ T (1.3)
Then the unitarity condition
uﬁ — Ug =1 (1.4)

holds for the real parameters
u, =u_, = coshxy, and v =, = sinhx,, (1.5)

The normalized Fock-state vector of b, is expanded in
terms of the states of q as follows:

0
7,8 =T 17, 8)g = 5 2 (9,@aCparsliy) (1.6)
»=0 ¢=0
with
qu;rs(xk) = a(p’qlerlr’ s)a9 (1’ 7)

17,800 = i (@) (a0 10,
and {1.8)
7, s)b = W}—sT(b{)'(bfk)s '0>b'

The vacuum |0}, and |0}, are respectively defined by

a0, =0 and 6,10, =0. (1.9)
For the fermion case the expansion coefficient analogous

to (1.7) is well known.3

There is also interest in the linear transformation for
the boson with zero momentum,4 In such a case, sup-
pressing the momentum suffix, we have, instead of (1. 2),

b =ua + va¥ = eSae~S
’ (1.10)
" = ua’ + va = eSateS,
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with

S = — ix(a'a’— aa) = — S. (1.11)
Then the real parameters « and v are given by

u =coshx and v = sinhx, (1.12)

The normalized Fock-state vector of the quasiparticles
is expanded as follows:

(B, =eS|l), = k;i;) |&) 4Gy, (%),
with )
le(x) = a(k|e5|l>a,

[k, = (1/VEI)a")|0), and

(1.13)

(1.14)

[B)y = (1/VRI)(BT)* | 0),.

(1.15)
The vacuum states are defined similarly to (1.9).

The purpose of the present paper is to derive the exact
expression for the expansion coefficients defined by
(1.7) and (1. 14). In Sec. 2 the coefficient given by (1. 14)
is expanded into the infinite series in terms of the one-
dimensional harmonic oscillator wavefunctions. In Sec.
3 further reduction of the series is carried out by fre-
quent use of the properties of hypergeometric function,
and its compact form is derived. In Sec. 4 it is shown
that the coefficient defined by (1.7) is expressed in
terms of the coefficients (1. 14).

2. EXPANSION OF COEFFICIENT FOR ZERO
MOMENTUM BOSON

To reexpress the quantity defined by (1. 14) in analytic
form, we replace the operators a*,a and the ket vacuum
|0}, by a scalar variable &, the differential operator
d/d&, and unity, respectively. Then, due to the commuta-
tion relation [d/d, £] = 1, the correct expectation value
is obtained by putting £ = 0, after all the differentiations
are performed,i.e.,

Gy, (x) = ﬁawlak exp <— Ex(a*a*—— aa)) (a*)i0),

-1 a* _Xfgp @2 : 2.1
=Ten dgk[exp< 2(5 dgz))gLo' @D

The power of £ can be expanded in terms of the ortho-
normal set of harmonic oscillator wavefunctions u,(§) =
N, exp(— £2/2)H,(¢) satisfying

(62 — d2/dg2,(£) = (2n + 1 (£),
where N, = (n1/2272])-1/2 and H,(£) is the Hermite poly-

nomial of nth order. Making use of the defining pro-
perties of the Hermite polynomial,5 we obtain

(2.2)
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o0
= 2, Ly Ny up, (€) (2.3)
m=0
with
o0
= [_dt £ H,(£) exp(— 3£2)
min(, m
(1+n+1)/2
= 112lm!| 3 2ot B ,
n=0 2 mpl[3(l — n)]1[3(m — n)]!
(2.4)
where the primed summation extends only over the
values of » which make both [ — n and m — n even
integers.
The following formulas,
m!
———H r————H 2.5
2prtn(8) = 20 B (8), (2.5)
H, (0) = (— 1)a 20)! d H, . (0=0, (2.6)
2q( —(_ ) tI! ? an 2q+1()" ’ (-
are applied to give the relation
X1, (8) exp— 37)],.
dtk
min(k,m)
= (= 1)Brem T 2GpRN2 klim! .
»=0 p![z0m — p)1[ &k — p)]!
(2.7)

Making use of (2. 3), (2. 4) together with (2.7) in (2. 1),
we obtain

oo minfl,m) -1-2m g~
, (23n-1-2m g-2(2m +1) ) 1/2
Cul®) = (k :) o o K- m)i[Km— ]l

— [ H (D] g

dar
d£k
= [(— 1)3%k 112" ®+1-De-x]1/2 OZO; ED™ml

m=0 2mem*

min(i, m) 3n/2
x D
n=0 n![3(I— )] z0m — n)]!
min(k, m) 3p/2
x > 23+ (2.8)

p=0 Pk — )| [3m — p)]!

Putting ¢ = (m — n)/2, and changing the double summa-

w min i, m) w mink, 2q+n)
14

o0
tion Z} E’ into E 2>', and further >’
m=0 =0 ¢=0 q=0 »=0

n=
k 00
into 2’ 27 ,we can rewrite (2. 8) as follows,
=0 ¢=0

Q

G, (x) = [——(— 1-—————)3kk!”] i = 2)nf2g-nx

2k+i-lex n=0n![3(l — n)]!
k 23p/2 (29 + n)!
. — 2% 2q9 .
E p![ 3k — p)]! qE( r q![q + 3(n—p))!
(2.9)

Further manipulations are required to reduce the in-
finite series in (2. 9) to compact form. If we introduce
the hypergeometric function® defined by

Cy) s» (e + LB+ ) z*
T'(a)T(B) r=0 T(y + ) Al
for 2] < 1,

F(a,B,v;2) =

(2.10)
and use the formula
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I(20) = (227 /27 2)T(W) (v + %), (2.11)

we have for the summation in (2.9)
(2 + n)!

q!{qg + z(n—P)]|!

2" IGr+ )IEn+1)

T2 D(3(n—p)+ 1)

3 (— 2e%) 24
q=0

XF(in+ 1),4n+ 1, 5(n— p) + 1;2). (2.12)
To guarantee that the variable z = — exp(— 2x) is within
the convergence domain, we temporarily assume x > 0.
However, we will find this restriction can be discarded
in the final result,

According to the formula?

r(a)r(B)F(a B ‘y,Z) r(a)r(ﬁ - a)(l

zye
I(y) Ny — a)

xF(a,y—B,a—B+ 1;1 1 )

— 2

I« —g) -5 _ _
+ Tt — B) (1 —2) F(ﬁy a,B—a+1;

"1 12)’
(2.13)

for |1 —z|> 1 and z # positive real number, (2.12) is
rewritten in the alternative form

D geyre_(2q¥ml __2n [Pg%(n+ 1)I(3)
¢-0 q!lg + Hn—p)|t w12 | T(31-p))
oy wDeLntl  p 11
x(1—2) F( 2’ 2’2’1—z)
+ T+ U0 3) 21
I'(— zp) —2)

n+ N p+1 1
r cos(z™
N (= ) (47p)
sy (1 — z)n+1)2
x F(—E,n"' l’l; 1
27 2 2'1-—:2

I"(zn + D)I(3p + 1) cos[—1r(p + D1
(1 — z)m/2e1

XF<-——1__p,ll+ l,i; 1 ) .
2 2 21—z

In the above the last expression is obtained by using the
formulas

(2.14)

(v + $)T(3 — v) = 7/cosmv and

. (2.15)
r'(v)T(1 — v) = #/sinmy,

together with I'(1/2) = 71/2 and I'(— 3) = — 2712,

Thus the double summation appearing in (2.9) is ex-
pressed as

s, 2302 ) ( 2024 (29 + »)!

2=0 pl[2(k — P)}! q=0 q!la + ¥n—p)|!
_2r  T(Hn+1) R, (=27EkR)!
712 (Gk)1(1 — 2)m D2 [T 4 1(3k — 7)1
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X Fl—» n+11 1 ) only if we note that the replacement of the upper limit
S A for the sum with respect to p does not affect the result
because of the occurrence of the factorial of the nega-
+ Y
2732  I(3n+ 1) S tive integer in the denominator of the lhs.
12 [l(k — 11 — z)n2+1 g
Taking into account the fact that, in the primed summa-
x 2)"[ 3k — 1)]‘ ( r 21 3.1 (2.16) tion, there also occur the factorlals (3B — 7»)! and
ik — 1) -7} 2 2’12/ [2(% — 1) — 7]! in the denominators of rhs of (2. 16), we
j separate two cases as follows:
2% T(3r+ 1) ” zk n+11 1 .
712 (1 — z)n D2( )1 ,.E -3 ATt z) r Lk even,
(2.16)= (2.1
2n+3/2 MGrn+1) S (ik -1 ( n 3.1
- 2)r{? Fl—7r,=—+1,>;
T2 (1 — z)2%1 4k — 1)]1 rz=2)( ) r ) "2 ’2’1-—2)' ik odd.
It is obvious that if & is even (odd) and [ odd (even), the © /)
coefficient vanishes by its definition (2.9). E( )S"F(" By Byv32) = (1 + 8)AF(— A, B,v; s2/(1 + s))
B=G\K (2.18)

To carry out the summation in (2, 17), we make use of
the formula

1 ( 3 )1/2% (%z)(-ze-zx s
(3%)1(30) 1\2%* coshx/ s=0 \s/\1 + 2%
Gy (x) = 1 ( k11 )
[3k — D] — 1)]1\2%+2 cosh3x

0, otherwise

for x > 0, However, we must be careful in dealing with
the series for the hypergeometric function with the
fourth argument greater than unity for x > 0, This prob-
lem is solved in the next section.

3. DETERMINATION OF COEFFICIENT FOR ZERO
MOMENTUM BOSON

The following analytic continuation formula8 is appro-
priate for defining the concrete functional dependence of
the hypergeometric function with the fourth argument
greater than unity:

r(‘)’)r('}"—' o — B)z-—a
Iy — a)T(y — B)
X Flo,a+1—pa+B+1—y;1—2"1)

F(Q,B,y;z) =

+ T)T(e + B — Y)aa—y(l — z)r-a-b
Ia)I(8)

X Fly—a,1—a,y+1—a—gl—2z1),
(3.1)
where it is assumed that |argz| < 7and that 1 — v,
B— a,and y — a — B are in general not integers. It is

with s = — 2. Thus, with (2, 9) and (2. 16), we immediately
reach the following results:

) F(s + .;_,_ 'g’%;f:,__z“ﬂ)’ if 2 and !/ evén,
P

12 DR f1e4 9,2 _
0=y g3 ko2 )
s=0 s 1+ ¢2% 2 2 271+ 2

if#and I odd, (2.19)

1k 1 2
F{s+ =, — =+ ¢,————
( 2’ 2 ’2’1+e‘2“)

1

(E) (s—1—~3k+e)s—2—2k+e) - (—3k+e(—3+¢

observed that, only if an infinitesimal quantity € is added
to the second arguments of the hypergeometric functions
appearing in (2. 19), are all the conditions presented
below (3. 1) satisfied. Applying (3. 1), we have, if & is
even,

F(s + —1—,- L + e,—l—;——?———-)
2" 2 21+ e2%

_ TRTGEk—s—¢) (1 + e‘?‘-") $+1/2
T T3k + 1) — )\ 2
1—e2%
=)

xF(s+l,s+ 1,s—l’i—+ 1+ ¢
2 2
lﬁ_e-Zx)k/Z*s-e

14 e2

+ FPOT(s — 1k + € (1 +e 2")‘s<
I‘(s + DI(— 3k +¢€) 2

xF(—

where the first term vanishes because of the divergence
of the gamma function I'(— s) in the denominator and the
fact that the hypergeometric function is well defined in
terms of the convergent series. Thus, if & is even,

k ] —e2%
Sosyst 1«-€;-—2—-——>, (3.2)

I(— i + ¢€)

l"(s z)

(—s+p—1)(F—sNz—s+ 1)

(1 +2e-2x) ) <__

(F—-st+p—1)

1 — e-2% kf2~s5~¢
1+ e‘z")

x "'2 /1—-9"2")“ (—s)—s+1)-

p=0 2
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- nl/z(ék)!s!<

as € — 0. Similarly, if # is odd
Fs+3—,—u+e,§;——-———2 >
2 2 2°1+ e2%

-2 ] 1— e'zx kf2-s 3
1+ e-z::) ( 1+ e‘2"> A=max(O.s-k/D AI(A + 22 — §)I(s — N 1(s — 5 — !~

[H1— e20)

(3.3)

5 [3(1 = e29)]\

71/2 <k —_ 1>' \ < 2 >s ( 1 - e‘23>(k"1)/2-s E
- — 1 — ,
2 2 1+ e 2% 1+ e2% A=max(0,s~(k-1)/2) A'[)\ + %(k + 1) — S]!(S — A)!(S + ';‘— M)

(3.4)

as € — 0. By adopting the expressions given by (3.3) and (3. 4), the functional dependence of (2.19) is manifested at a

glance in the following forms:

[ — e-2))

< k!l!__>1/2(_ tanhx)*/2 %2: (— coshx sinhx/4)#

2+l coshx §=0 (31— !

Gy lx) =

v=max(Opu-2/2) V(v + 3k — p)1(2n — 20)1
if £ and I even,
[5(1 — e-25)

kIl]
<2’“l‘2 cosh3x

0, otherwise.

1/2 D2 (_ coshx sinhx/4)s
— tanhx (2-1)/2 Z:
> ( ) w0 (3 —1)—p)!

yemax(Oi-Ge-0/2 VI + 5k —1) — w12+ 1 — 2

if & and I odd,
(3.5)

For the purpose of recovering the apparent symmetry between 2 and ! we put A = v — p, change the double summation

/2 [N 2 u mink/2,1/2) 1/2-A
2 x5 Yt
p=0 v=max(0.p-#2) \p=0 v=max(0,u-(k-1y/2)

(

A=Q v=0

B min(k/2,1/2)

min((2-1)/2,(-1¥2) (-1)/2-A
2 2 ) ,and have
A=0Q =0

1/2
— tanhx)®/2 2]
(2’“1 coshx> ( )

Gy lx) = % ( Al ) 1/2(“ tanh x)k-D/2

2k+1-2 cogh3x x=0

v=0

min((z-1)/2,G- 1)/2)

_ ai N7 Y
e A R
= \zZ -— s\2¢t ™ -

v=0 v

{— sinhx coshx/4)2

G-Dl-A ()
[E 2],

(2x + DI — 1) — A [HI— 1) — !

for &, 1 odd.
(3.6)

Since the sums in the square brackets in (3. 6) are nothing but binomial expansions, we finally complete the compact
expression of the functional dependence for the coefficient G, (x) as follows:

min(¥/2,1/2)

(— 4/sinh2x)*

1/2
(— 1)r/2 <_’:°LZL__> (tanhx)%+5/2
2%+l coshx

Crl0)= (— 1)e-D2 <__.._~.__k H >1/2(tanhx)(k+l)/2—1
2k+1-2 cosh3x

0, otherwise.

As the direct results from (3.7) we obtain

(— 1)(/e+z)/2ckl(x), for &, 1 even,

Gy~ %) = 3-8
(— 1)*&+D2-1G, (x), fork,! odd,
and
(— 1)&*D2G, (x), for k, I even,
Gy(x) = (3.9)

(— 1)®*22-1G, (x), for k, 1 odd.

A simple relation follows from (3. 8) and (3. 9), i.e.,
Gy (— %) = G,(x) (3.10)

which can be directly proved from the definition of the

coefficient in (2.1). This fact shows the correctness of

(3. 8) derived by assuming that our expressions in (3.7)
hold for any value of x. Therefore, (3.7) gives correctly
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X0 (2N NEk — )AL -1
min@-1)/2, (- 1/2y
X0 (2x + D!k — 1) — A1 — 1) — ]!

for 2,1 even,

(— 4/ sinh2x)?

, for k, 1 odd,

(3.7)

the desired expressions for G,,(x) defined for any real
number x in (2.1). As special cases, (3. 7) provides

Gyolx) = cosh"12x and G,,(x) = cosh™3/2x (3.11)

as given by Eq, (20) in Ref. 4.

It is straightforwardly proved that G,, (x) satisfies the
following orthonormality condition:

kg le(x)le:(x) = 6”1. (3. 12)

4. DETERMINATION OF BOGOLIUBOV
TRANSFORMATION COEFFICIENT

In calculating the expectation value defined by (1.7), it
is profitable to replace the operators af, a’,, and q,,
a_.y, and the ket vacuum |0}, by two independent scalar
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variables a, 8, differential operators 3/9a, 9/98, and
unity, respectively. Similarly to (2. 1) we set

qu.'rs(xk)
__1 99 8¢ _ _ 92 \\ a7Bs
T Vplg! dar ape {em( xk<aB aaa;3>> Vris! ] w0
8=0
If we introduce new variables ¢ and 7 by (4.1)
tE=(a+PHNZ and n=(a-—p)/iV2, (4.2)

50 that - =L<i, ii> and 1=L_(8_ + i—a—>,
da Y2 \at  op B V2 \at op
we have

Gp qrs (xk)

a .o\ /0o .0\
= (2p*a*7esplglrisl)y V2 [ — — i— <-—+ z———)
@rerplairish [(ag ) et o

xk 82 xk 62
e e G Il G

x (E+ m)r(§— in)*‘]

557 50

SHAes

v\p/\o

—Pﬂl—ﬂ:/— __fi_ 2 __ﬁ) res- —o}

dtpra-p-v {exp( 2 (g dt2 : ’ £<0

y du+v . < xk(2_£)> pm}jl
iy Xp ——2* N an? n .

120 (4 3)
Since the two square brackets in (4.3) correspond

essentially to the quantities given by (2. 1), we can re-
write (4. 3) as follows:

a ©

X
— ®
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qu: rs (xk)

g L4
=(2P*‘1+“splq!rls!)'1/2f) IR

55 5 ZH060))

X[(— DE*ovp(p + g —p— W)lr + 5~ p— 0)!

X (p + M Up + O) 112 Gpagop-vires-p-o(®) Gunsupool¥a)-
(4. 4)

The contributions to the sum come only from the terms
in which both 4 + v and p + o are even or odd, and both
p+g—p—vandr + s—p— o even or odd. Con-
sequently G, ., <(*y) vanishes, if p + ¢ is odd (even) and
¥ + s even (odd). On the other hand, the conservation of
momentum adds another restriction,p —g =7 — s, Itis
straightforward to show by using (3. 10) that

Grs;pq(" xx) = qu; rs(¥x)s (4.5)
which is also expected from the definition given by (1.7)
or (4.1).

In conclusion the problem of determining the transforma-
tion coefficient explicitly is solved with the final ex-
pressions given by (3.7) and (4. 5).
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Assuming that a functional of the form F(4) = T exp(iB(A)) generates covariant time-ordered pro-
ducts of currents, general properties under Lorentz transformations are derived for the expansion
coefficients of the functional B(4). The functional B(4) is explicitly constructed for the case of
simple commutations relations between currents. The Feynman conjecture is discussed.

1. INTRODUCTION

It is well known that the usual time-ordered product
(TP) of currents is not covariant under the general
Lorentz transformation. The noncovariance is caused
by the presence of Schwinger terms (ST) in the com-
mutators of some currents.

The problem of covariant time-ordered products (CTP)
was studied by Brown! in the framework of canonical
theory and gauge principles. There, the approach is
essentially functional, but the existence of the Hamil-
tonian and of a time evolution operator is assumed. In
the present work the functional is treated only formally.
It is generally needed to shorten expressions, to keep
symmetrization, etc., with no effort made to give the
functionals a strict mathematical meaning. The same
problem was treated from the algebraic point of view
by Dashen and Lee.2 Qur general form coincides with
the low-ordered CTP given in Ref, 2. In this paper we
shall assume that formally the CTP of currents can be
given by the functional F(A) = T[exp(iB(A))], where T
stands for the chronological time-ordering operator.

The CTP of # currents T*(Jfll(xl) e J,f:(x,,)) is given
by the formal functional derivative of order n,i.e.,

T M) oo ) = ()79 F(A)|

A=0
(1.1)

We shall derive general transformation properties for
the functional B{A), which are necessary and sufficient
for the functional F(A) to be Lorentz covariant, The
explicit form of B(A) is given when the commutation
relations among the currents involve at most first
order derivatives of the 5 function in ST. The Feynman
conjecture is studied in this case.

Aﬁ }(x M) Aﬁ:(x")

2. DEFINITIONS

We denote by G(4) a general functional which has a
formal Volterra expansion:

&1
F(A) = nZ:>0'T!__ f- . .fF:,lal-;-"!an(xl PR xﬂ)
X AGGy) e AR(e,)dry e dx,. (2.1)

p; stands for the Lorentz index, g, for the symmetry
index, x is the coordinate in Minkowski space. The coef-
ficients F, 1" *% (x; -+ x,) are operator-valued distribu-
tions. To give a mathematical meaning to the above
expression, one should choose the functions AZ(x) from
a set of test functions and demand the convergence of
(2-1) in the weak sense. Note that only the symmetric

part of F:}zl“’;n (xy ** - x,) contributes, and is given by
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S FErtE — 3

n n.ay-ay

F(a)|

e d
Al ALY A=0

= D'i(w) -+ D) FA),_, (2.2)

where S, stands for the symmetrizer of order » on the
set of indices (1--- 7). We can therefore limit our-
selves to symmetric coefficients. Often formal nota-
tions such as

F(4) = D (1/n1)F,A",
(2.3)

D})(x;) " Din(x,)F(A) = D"F(4)
will be used.

It is known that the usual TP of currents is generated
by the functional

F(A) = T{exp[i [ dxJp (x) A2 ()]}

( f dx stands for four-dimensional integration).

(2.4)

The above functional also satisfies the following condi-
tions:
1. Unitarity,i.e., FLA)F'(4) = F1(A)F(A) =1,
Ft(A) = THexpl— i [J¢ (x)Ag(x)dx]}, T* is the anti-
chronological ordering operator.
2. Causality, i.e., D¥ (x)(F*(A)D¥(y)F(A)) = 0 for
x Zy,i.e.,xo >9y,and (y —x)2<0.

The above form of F(A) is also obtained from Assump-

tions 1 and 2 except for some “quasilocal” terms, which
may be generated by a functional B(A).3:4 Therefore we
take the F(A) to be of the form5

F(A) = T exp[iB(A)].
For the functional B(A) we require that
B(A)=B*(4),

[BA),B(A)]=0

(2.5)
for supp A ~ suppA, (2.6)

where suppA = {x; Al (x) = 0};6 ~ w means that the sets
8,w are spacelike separated, i.e.,

x€fhyew—->(x—y)2<0
and that B{A) generates quasilocal fields,4 i.e.,

DYix) -+ Din(r,) BA) 4o = BEL M (-0 x,) = 0
for x; =x, =+++=x, only,

DF(x)BA)| - = JE (). 2.7)
Let L denote the set of all covariant functionals, i.e.,

G(A) € L - U(A)GA)U(AL) = G(AA), A Ak = Abv

Copyright © 1973 by the American Institute of Physics 623
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A (A lx),where A is 2 4 X 4 matrix representing a
Lorentz transformation in Minkowski space.

We require

F{A) e L. (2.8)

Condition (2. 5) assures unitarity and (2. 6) gives causal-
ity. In general, B“1 in L (g *++ x,) will be of the form

)

21 S P -- o¥n)ply i L (61)88y —xp) 0 8(xy ~x,),
iz

where P(-++3--+) ig a polynomial of derivatives, and

bi"lgl',",“,"an(x) is a local field.

In the case where the polynomial is a constant, the func-
tional B(A} is

BA) =T & L B (ARG ARG, (2.9)
The functional B(4,#) = T f B/} " (x, ) Ali(x, 1) - -
A“" (x, t)d3x corresponds to the mteractmn Hamlltoman

in the canonical formulation® and represents a power
expansion in an external field A“(x) coupled to the cur-
rent J# (x).

We shall call the set {ki} a partition of order » if Vi,

1<isn, k> 0,and 2J7_ ki =#n,and define the follow-
ing functions:

Crl,) =1/ 1 kL,

T(k},) = { =1[(wjﬁ(A)) \m] k]} )

3. TRANSFORMATION PROPERTIES

In this section we examine some results of Assumption

(2.10)

(2.8). AsF(A) =2 (1/n))F,A"and F(A) € L «<>F,A"cL,

we can write for the generators of the infinitesimal
Lorentz transformations M#¥ the commutation relation

7
[M¥Y,F, - An] = jz;l f.. .. f F:.le‘-"'”a,,("l oo x)

X A:i(xl)' ..g:;:(xj)...A::(xn)dxl eedx,,

where
Ag(x) = ilxHdv —xv3k)ALlx)— i(g4 g0 —g{grO)AS(x),
while (3.1)
[Mey, TMx)] = i(eroy — x v )T Mx)
+ifghdr(x) — g dE(x)].  (3.1a)

The transformation (3.1)V# is sufficient and necessary
for F(A) € L. The term F, A”/n! can also be written as
(DY/DF(A) 4o A

Let us now use the functional equality3

G(D)- exp[B(A)] - Z(A) = exp[BA)IG(D + DB)Z(A), (3.2)

where by G(D) we denote the functional obtained from
G(A) by substituting in place of the function A2(x), the
functional derivative D¥ (x). Taking Z{A) =1 nd G(A)

[ f 8lxy —x,) :5(::1 —»x”)A“i(x) A“”(x Xy e
dx,, we get

I Math Dhue Vnl 14 No. 5 Mav 1973

F,A" = T[D +iDBA)]"|,.,
- Tf' ..f{[D:ll(xl) +D:1l(x1)iB(A)]' o
X [D;::l(xn) +Da;:'(xn)iB(A)]}|A=03

Agtley) AP (dxy - - d,,. (3.3)
The mtegratmn and summatmn over all variables with
the functions A ;(x )» j =1-++7n make the operator D¥ (x)
similar to the ordinary derivative. This fact is used in
Appendix A to prove

F-Avnt = 5 CHke})T{Re},) - An,

part a

(3.4)

where {k“} is a partition of order n,i.e,, satisfying
"1 k% j =n and the sum 25 ., Tuns through all dis-
tmct partmons of order =n.

Using (3. 4), we also prove in Appendix A that F(A)e L<>

n n~l
A " A A’

1. [Mkl,iD"B(A)lAzﬁ]--m—z_Z)liD"B(A)IAzo-
T =

n!
= Z%l f"'fD:ll(xﬂ "D:”(xn)B(A)%mo
i= n
gﬁi("ﬁ A:i_(xj) .o Aﬁ:(xn)dxl oo dx,
for1 <k, <3and f&g(x) as in (3.1).
‘ An n An-14
2. [Mor,iD"B(A)l,_,]- ;—;: }:, iD"B(A) 4" pr 2
:DAB
v B ee 229
(3.5)
, D**B(A)

i m‘ N } 3(x0 —y0)xr —y7) - A,

=n/2
where dr (k) =
1; otherwise

x € suppD*BA)| ., ¥ € suppD**B(A)l .,.

The transformation properties stated in (3.5) are the
generalization of the equations given in Ref.2 forn =

2, 3,4. Here no assumption has yet been made about the
nature of the commutation relations in (3. 5). The only
conclusion that can be drawn is that the commutators
are again quasilocal fields, This follows from Assump-
tion (2. 6), which guarantees that all the coefficients B,
are relatlvely local. For the case when B(A) is given by
{2. 9), the explicit results can be found in Appendix B.

In the next chapter we shall see that a functional B(A)
satisfying (3.5) can be built explicitly for some models
of current commutation relations.

4. AN EXPLICIT FUNCTIONAL

It is evident from (3. 5) that the Lorentz covariance is
connected with the equal time commutation relations
among the quasilocal fields. Let us therefore study a
model for which the commutation relations between the
currents are known.

Let us assume that

[E (%), J¢(9)]6(x0y0) = Rl (x) 84(x —y) + 8T, (4.1

where k£ (x) is a sum of local fields, and the ST involves
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first-order derivatives of the 6 function. In general, ST
will therefore be of the form

3 3
ST = 2 Sii(9)0784(x —y) = 25 07 [Sirilx)84(x —y)].
= =t 4.2)

We assume also that the commutation relation between
the divergence 3,J¢ (x) and the currents is of the above
type. We shall see that in the case of the Gell-Mann®
algebra (with some other mild assumptions) all the
agsumptions stated above are satisfied.

Define a functional
BA) = [f G(4,9)r(x)Az(x)G1(4,y)dxdy,
where G(4,y) = expi [dxJP(x,y°)(x — y)*A¥x,y 0)]. (4. 3)

As the currents are Hermitian and the fields A“(x) real,
we have the following properties:

DsB{AY 4.5 is a quasilocal field,
Dx)BA) ,_o = JE(x).
Therefore the functional B(A) defined by the coefficients

a. G*(A!y) —G(Asy))

b, BYA)= B(A) -
c. [B(4),BA)] = for suppA ~ suppA,
d.

e.

Biul V'g (xl

nal

x) = (U/mSB L (g x)  (4.4)

will satisfy the conditions (2. 5)~(2. 7) and the functional
F(A) defined by

FA) =

will also satisfy condition (2. 8).
Using the expansion e4Be™4A =B + 2,7 (1/n])[A-

T exp[iB(A)] (4.5)

{A,B]---], we find
BA"= oS R, g) " [R, (s %y)s
Jfll(xl)} T A"z(xz) v A“n—x(xn_lmgx(xl)dxl oo dx,,

R (x,9) = WJO(x) (x — y)6(x® —0),

The proof of covariance under spatial rotations is
straightforward for the entire functional F(4) and cor-
responds merely to exchange of the variables of integ-
rations. For boosts we prove the infinitesimal version
of covariance (3.5).

For the n = 1 coefficient, fBﬂ {x) Az(x)dx = fJf* {x)
A“(x)dx and (3.5) is obtained from (3 1) and from par-
tial integration [suppose A¢(x) to be of compact support].
We present here the proof for n = 2 to emphasize the
importance of the assumptions made for the commuta-
tion relations. The last step of an inductive proof is
given in Appendix C. For n = 2, we have

B,- A% = [f [J9%)(x — y)*AE&)6(x0 —y0),J¢(3) A, ()]
Xdxdy .

Therefore,
[Mo, B, - A2] = [M, [f dxdy[J0)

X (x —y) AR (0 —y0) I () A (y)]

= [f axd¥ilx0r —x730)[J0x) (x — y)*A(x),

JHy, x0) A, (y, x 0]

+ [[axd3yildr () & — y) Alx), # (3, x0)A (3, £ )]

+ [[dxddy[70k) (x — y)-Alx),
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i(x030 —y739) ¥y, x0) A, (¥, x0)]

+ [[dxady[Jok) (x — y)-A),

X i(g0rJly, x0) — gWIo(y, x0) 4, (7, %)),
where we used the Jacobi identity (3.1a) and ignore the
summation over symmetry index, which is not essential
here. Performing integration by parts, we rewrite Eq.
{4.6) in the form
[Mor,B,A2] = [[dxd3yi(yr —x7)[2000%),

x J¥(y,x0)} (x — y)*A(x) A, (¥, x0)

+ [fdxd3yi[ae (x) (x — y)*Alx),JE(y,x0) A4, (y,%0)]

+ [f dxd3y[Jo(), J¥ (3, x0)] iy# (x — ¥)- 3 OAx) A, (¥, #°)
+ [f axd3y[gow), v (,x9)]

X (~i)x0x — y)- 3¢ Alx)A, (¥, £0)

+ [f axd¥y o), J(y,x0)] (x — y)-AW)A, (y,xO),(4 )

[4,(y,x0) as in Eq. (3.1)].

(4.8)

We have assumed that at most, one spatial derivative of
the 6 function appears in the commutation relations
involved.

Therefore,

a. [ax(xr —y7)[I0), J* (y,x0)] (x — y)*Alx) =

b. Using 30J0(x) = 3,JH (x) — 8, J4(x), we rewrite the
first term in the rhs of Eq. (4 7) in the form (after
partial integrations):

JI axddy (i) a7 @), 9 (9, %)) (x — 7)*Alx) A# (3, 20)
+ [f axd¥il3(x)- Alw), J* (3, %0) A, (¥, £9)] (& — 7).
We subtract and add the expression
[f dxadyilro) Ayx), 4 (v, £0) A, (7, 50)] (&7 — y7)
and recollect various terms to obtain finally

[Mor’zDZB(A)lA 0] 2A2 = E tDzB(A)‘A % A'

+—4 ff dxdy[w’t(x)A)‘(x),
W (9) A, (9)]6(x0 —y0) (6" —y7).

The result (4. 8) is exactly the same as in (3.5) forn = 2,

Having established the Lorentz covariance, let us write
for comparison the covariant time order product for
n = 2. Using definitions (1.1) and (4. 2), we get

(4.8)

THIP(x)IP(y)) = TULX)IP(D)),
T*P)JE (¥)) = Tk (x)JO(y))

= TUX)JTE () — £S0*(3)6(x —y),
THJHx) I} (9)) = TUHx)IE ()

—z(SgF(y) + SR olx —y). (4.9)

We note the appearance of the ST S%*(y), which does

not appear in the Gell-Mann type of algebra. It is simple
to show, using Jacobi identity for the commutator [Mo,
[79¢), J9(»)]] 8(x© —y©) that

[Mer, S304(x)] = i[Sghs (x) — ST (x)]

+ (0% — x730) Sgotk(x),  (4.10)
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From (4.10) it is evident that for S2ii(x) =0, 1 < < 3,
we have the symmetry SgF-” (x) = SZ#(x), and (4. 12) is
the same as (2.9) and (2.10) in Ref. 2, The above sym-~
metry property is reflected [for the case §:#(x) = 0]
also in higher order terms of B{(A).7 In the Gell-Mann
algebra for SU3 X SU3, one assumes that the local com-
mutators of the time components of the currents, at
equal times, do not contain ST. I one also assumes that
the commutators [J2(x), 3,J}M(y)] 6(x0 —y0), [3,J¥ (x),
3,JM»)]6(x® —¥0) do not have ST, it follows that

a. [JEG),JP(9)]8(0 —0), [JE (%), 3,J)M3)] 8(x0 —30)
contain at most one derivative of § function in ST,

b. All commutators obtained by successive commuta-
tion of the currents J¥ (x) with ST have the above-
mentioned property.7.8

We conclude therefore that for currents satisfying the
Gell-Mann algebra there exists a functional F(4)[which
can be taken from (4. 5)] which generates CTP for the
currents.

5. THE FEYNMAN CONJECTURE

The Feynman conjecture expressed in terms of CTP
reads simply
aulT*(Ji‘x(xl) cee

T 05,) = TH00 ()0 205) - )

+i Z) yap TG o D) -+ L)) (x — ),
(5.1)
where C b and the structure constants.

In the case of nonconserved currents, the new field
3, J¥ (x) is introduced, Assume first, therefore, that the
currents are conserved.

Let us express (5.1) in terms of (F,- A#)/n!, n=1,

(—9)"3, D¢ (x) F, + A*(1/n1)

= iC,pe (—i)*" 1AL () Db (%) F, _; - A*"1[1/(n — 1)1].
(5.2)

Remembering that 3, J¢ (x) = 3, Dy (x)F,+A = 0,we can
sum up formally ang obtain
Di (x)F(A) = (-)C,, AL (¥) D¥ (¥) F(A). (5.3)

Equation (5. 3) is therefore equivalent to the Feynman
conjecture for conserved currents.

Assume now that F(A) is invariant under the gauge
transformation

GAa(x) = a ﬁha(x) abc p(x)a)‘c(x) (5' 4)
Then
6F(A) = T{i6B(A) exp(iB(A))}
= T{i [ 6A2(x) D (x) B(A) exp[iB(4)]dx}
= [T{(iD (x)B(A)) exp[iB(A)]}6Az(x)dx
= [[-8,(DE () F(4)) — C,, Ablx) D (x) F(A)}ox (x) dx,
9, D (0)F(A) = — C,, AL (x) D¥ (x) F(A).

We conclude therefore that the Feynman conjecture is
equivalent for conserved current to the invariance of
the generating function F(4) under the gauge transfor-
mation (5. 4).

We now write Eq. (5. 3) in terms of the coefficients B,
using (3.4),

J. Math. Phys., Vol. 14, No. 5, May 1973

L, DE() T, - A"

=3, Z}C({k“} )SZ) T[“(f) k]'ij

(=) 7:

X iD¥ (x) Di-1B(A)| A=o] . A"'l}

=; CopcAL () DE (x) T,, - A
n-1

= iCocA20) T O}, )5
o j=

X T n<iB‘>kl ..r_’%'j Dk (x) Di1B(A)| An-2
/=~ iDp(x) Di- o - An-
1= 7-"_ 7 ¢ A_O} (5.5)

(with obvious notations).
In the case of Sg(x) = 0, it follows that B, %"
Gy oo x,) = Oonlyforpj =0, 1<j<n, n>1,7 There-

fore in (5.5) only three-dimensional divergences of the
B, appeared and commutators of the currents JO(x) with
different B, arise. Using the methods of Appendix A, it
can be shown that (5. 3) is satisfied. The non-Schwinger
terms on the rhs of Eq. (5. 3) are equal to the different
terms on the lhs of Eq. (5. 3) and the divergences are
canceled against Schwinger terms. The cancellation
would not take place in the case of a Schwinger term in
the commutator [JO(x), J2(y)]6(x0 —y0).

Coming back to the case of nonconserved currents, let
us define a new “current” and a new function:

JMx); 0<a < 3}
g JH); A =4 )’

fA)\(x); 0<a 631
TleGa=4

0SAS4, I(J‘(JC):{
(5.6)

)‘(x) =

The “new” metric

Sg"*, Osyp
gk =10, 0sp(a
( -1, p=2A
The transformation of the “current” K}Mx) under infinite-
simal Lorentz transformation reads as
0 s p,v <3, MW, Khx)] = ilxtdy — x99 ) KMx)

+ i[gIEY (x) — UKL (x)].

Let D} x) denote the functional derivative d E}Mx). It then
follows that the functional

T{exp[iB(E)]}

will generate CTP for the currents and their diver-
gences if and only if Eqs. (3.1) and (3.5) are satisfied,
making the obvious substitutions J ~+ K, A - E. To ex-
press the Feynman conjecture let us also define for-

(5.7

F(E) = (5.8)

mally 3, = — 1;then (5.1) becomes
BTHE, () K ) - Ko ()
< A A Y
=1 ],Z=>1 Caaij*(Kall(xl) PP Kaj](x]_) “on Kann(xn))ﬁ(x _x])'

(5.9)

As before, the Feynman conjecture is equivalent to the
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invariance of the functional F(E) under the general gauge
transformation
BES(x) = (—)°043,61%(x) — C,, Eo(x)6A°(x) (5.10)

and is also expressed in terms of the coefficient as in
(3.5) with the necessary modifications.

We are able therefore to express, in terms of functionals,
the necessary and sufficient conditions for F(E) to gener-
ate CTP for currents and their divergences, and to
satisfy the Feynman conjecture.

It follows (Appendix D) that in the case when no ST are
present in the commutators [K0(x)KQ(»)]6(x® —y9),
[K2(x), K4(7)]6(0 —30), [KO(),K2(»)]6(x0 —y0), the
functional F(E) = expiB(E) [where B(E) is given by (4.3)
and (4. 4), making the substitutions J - K, A — E] will
generate CTP as above.

Finally, let us note that if one looks on B(A) as a Hamil-
tonian expressing the coupling of currents to an external
field Aﬁ(x), among which some combinations express the
electromagnetic field [A¢(x) = A3(x) + (1/V3)AB(x) in
SU3 case], one would like to have invariance under
gauge transformations of the second kind 8A¢ x) =
aubh(x) +Aﬁ(x).

From this point of view, the currents are J¢ (x) =
D#(x)B{A)A = 0) and they depend on the electromag-
netic field. In particular, the commutation relations
depend explicitly on the electromagnetic fields. For
example, to first order in ¢,9

[79(), 78(y)] = (2ie/812) Fei(x)3,58(x — ),
Foi(x) = €I, A¢—3, Af).

In this case the Feynman conjecture is not equivalent to
the invariance under gauge transformations of the
second kind, and it is impossible to satisfy both of
them,10

APPENDIX A
We start with Eq. (5. 3),

(1/n))F,- A" = T[(D + DB)"](1/n})
=@/m) [ [ T{{Dhr6ey) + D) Bl g
x [Dn(s,) + Dpr(5,) BA] 4}

X ALeg) e Anle,)dxy ¢ dx, (A1)

e
We absorb here the factor 7 in the function B and prove
(3. 4) by induction. For n = 1, it is trivial. Assume
(3.4) for allk, £ <n — 1 then

(1/n))F,- A»
= T{[D + DB(A)]-[D + DBA)]*"1}|,_oA - A"-1, (A2)

First it is clear that each term in F, - A”#- (1/#!) can be
specified by some partition {& “}n and all partitions
appear in Eq.(3.5). (This also follows from the proof
indicated). Each configuration given by the partition
{ke},, i.e., T({k2},) can be obtained from the configura-
tion of order (n — 1), T({k2},_;) by multiplication with
DB(A)l4-¢ or by applying the functional derivative D
[see (A2)]. Therefore let {k<}, be a partition of order n.

Define

feetiy = {

ke i1

ke = 0
ki‘——l;i:l}' 1"
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ks i 74,1 =j—1
{ka}‘z,-;l: kja__]_; i=j ’

ke +1;i=j—1

kp #0,j =2-+m.

The configuration given by the partition {k“}n is thus
obtained by multiplying with DB the configuration given
by T{k*}}_,) and by applying the functional derivative
on the expression D/B appearing in the configuration
Tk} _,). Note that {2} , defined above are really
partitions of order » — 1,i.e., Z}i”;llkf‘-i ‘i=n—1. We
note that by applying the functional derivative D we
apply it to the expression

(DiB)*1*
and therefore a coefficient (kje1 + 1) appears.
It remains to count the numerical coefficients. Let
kr=0,j = 1-++n, Then the numerical coefficients (X)
are by induction,

_ 1 cdeety) . Ckat ;) (key +1)

eyt 7 n el - opfet gy
=1 1#33-1
=1; kg e ke jle(k2y +1) .
n B iz 1 1 .
AL IED'RF) 72 AL (@0 TR G — DU + 1)

(A3)

The right-hand side of (A3) is valid without the restric-
tion kja # 0, therefore,

> ke .
1 A S({k },,)a (A3')
g, (@]

X = .
@t - &Y

and (3.4) is proved.

Equation (3. 5) is also proved by induction. Let us show
that (3.5) is necessary for F(4) € L. (The converse is
proved along the same lines.) Assume F(A) = F,- A#-1/nl
satisfies Eq. (3.1),i.e.,2,, C({e=},) T{k},) satisties the
same equation. Let (3.5) be true for allk, k <n —1,
when the functions A have compact support (to ensure
integration by parts if needed) and may be multiplied
also by 6 functions. We need only prove (3.5) for boosts;
for rotations the proof is straightforward., Let us con-
sider for demonstration one term in the sum (3. 4) and
look at the commutator

[Mor,c{ke},) THRY,)] - (A7/nY).

To apply the induction assumption, we take those par-
titions for which k% = 0. Because of 6 functions appear-
ing due to time ordering, the result of the commutation
will contain, in addition to the sum of terms following
from (3. 5), extra commutation relations of the form

(A4)

i[D'BA)] 4.0) D!BA)] 4] (67 —y7)8(x0 —30), if
kla..kja = 0, x € SupleB(AHA:os

y € suppDeB(A)| ,_¢. (A5)
We show that the extra commutators cancel the com-
mutators arising from (3. 5) for all {£o}, if the partitions
have more than two elements. For each extra commuta-
tor from the partition {¢<}, coming from the cummuta-
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tor D!B, we associate a commutator coming from [Mer, kRt =l t =j,t =1 +j
DiB(A)| ,.o][see Eq.(3.5)( +j < n)},and from the Be +1: F=1 +4
S Tl t=1+j .
term (a). {po} = 7 y 1 #j
oY1t =1 ’
)/t — DHD'BA) .o (1/11), bty —1; ¢ =j
D*IBA)| 4.0l (6" —37) 6(x© —30)
Skta; t=1,t=2
{assume ! < j)(this mapping is one to one). ® P, = kg, +1;6=2p, 1=j.
As before, because of the kg power of (D#B) in T({ka},,), ( RO — 2t =1
we shall have numerical coefficients k* -k for I = j and ' T
B .
(¢ ) forl =j. Because of the opposite sign of the commutators of
Let us define (I?. 5) 3:nd {2.5), we need only count the numerical coeffi-
, Ccients:
(@) k- kja _ k2 'kj"‘(l;j) . (kl%j +1) '
n k(! hd. ku -1 hq. -1
JL [0 ] el [ @0 R — 1@ TR — 10

1

(@ +HNF RS, + 1)1

= (g + DY) ——————
b} )’ « p21)

ke -k, (kg + 1) (2
tfxl [N Rt 2+ &2, + U@L 11 e 2 (B — 2)1 (5% — 1)B° S, [ ¥ 1]
1 1

®). (&)

= (kg +1)(3)- (A6)

[

0 o o]
AL (@D -5

f
The right-hand side of Egs. (A6) are exactly the numeri~

cal coefficients coming from (3.5) by induction, The Equation (B2) is a generalization of Eq. (2. 23) in Ref.1.

terms of the form ), D#B - (A#"1:A./p)), p < n'will be Wik, _
canceled because we’have assumg F{A) € L and we Indeed we recover (2.23) from (B2) when B %a a, 0 for

shall remain with the commutator [Mo, D*B]A"/n! and #1(sy) = 0 and is symmetric in the indices (1.2).
the “exira” commutators coming from partitions which
are of the form {k2, kf} or {&2} if 2 = n,and as in (AS), APPENDIX C

The symmetrizer in S, acts on the set of indices {1---2}.

we count the numerical coefficients and obtain after From (4. 5) it follows that (the { factor has been ab-
rearrangement, Eq. (3. 5). sorbed)
APPENDIX B 1 1 1
2B A=~ 0 . An-1
B(A) is given by nt B, A n f T By - A {n —1)!
BaY= D [ By tn ()AD) - -Ap(x)dx.  (B1) X840 —y0) (! —y")Ap(x)dx, v € suppB, ;. (C1)
n=0 !
In order to apply {(3.5), we rewrite the coefficients in Following the proof of (4.5) for » = 2 and using induc-
tion, it is easy to obtain
the form
” ---p - _ - — .
B"'tx“'u%(xl)b(xl %) 80y —x3) G(f]t,,p %) Mor, }-Bn' As] = =% l:]g(x), 1 B, - Al
=B,L T byt x) nl n n —1)!
We differentiate (3. 5) functionally. As mentioned in X (67 —y7) 6(x0 —y0)Agix)dx
{2.2) only symmetric parts contribute, and we obtain  -12) 1 .
i
e . - d=1() [|J9¢),| — B,y ~————————Byp1
(Mo, By T (1)) 06y —xp) 0 8y —%,) 2 ( )f[ ‘ (x)’[k! Yo—k—11
/2 o ) o -0
=nls | % d”(j)[Bj'fél.f{.y(xl)5(x1 ~%xy) e 806y —x), X (y1—2f)6(y2 —29) | (6! —y})6(x0 —y§
371
n
~ 1
B:?.j‘ﬁ;:”;.“an(xj.pl)a(xj-pl -%4-2) e G(xjjv&l - xn)] X AB‘}. * Aﬁ (X)dx + JE=1 ;iBn‘ A”-l * Aj’
X 8(x —x2,) W] — %) ¥, € SuppB,, z, € SuppB, ;. (C2)

+ §{lix0 — 2709 BYE Pn, (61)]66e; — %)+ 86y — %) yging (C1), the fact that B is given in this case by an

ey, k0o expression of the form (B1) and the Jacobi identity, we
+8§, (i S (gBiL T, () — & m]Bn,’&l---aj--'-‘an(xl)) collect the numerical coefficients of similar expressions
j=1 v and get (3.5). [One should be careful in obtaining the
X 8(xy —xg5)e e 8lxy ——xn)). (B2) k'thtermof (3.5)forn =2korn =2k +1).]
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APPENDIX D

Using the results obtained in Ref. 9, we need only prove
that the commutators (the symmetry index neglected)

[K'x), K4(3)]6(x0 —y0), [K%(x),B,]5(x0 —y0),

v € suppB,, do not contain ST. (D1)
We have assumed that11
[KO(x), K4(»)]6(x0 —30),  [J0(x), 33 ¥ ()]6(x® — )
do not have ST; therefore,

(x! ~y?) [KO(x),K4(y)]0(x0 —y0) = 0,
Using the Jacobi identity, we get
[Mor, (xt —3!) [KO(x), K4(y)]8(x0 —»0)]
= (¢! —y"){[ix%7 —x72 ) KO(x), K4(y)]6(x0 —y0)
+ [K7 (), K4(9)]} 6 (x© — )
+ (¢t — 1) i[KO(x), (097 —y730)K4(y)]o(x® —~y©)
= — i(xt — y){[3070(x), K4(y)] — [K"(x), K*(y)]}6 (x0 — 50)
= —ifx! —y0) (&7 —y"){[K4(x), K4(y)]
— (3,99, K4(»)]6(x° ~3©)
+ilxt —y?) [K7(x), K4(y)]6(x0 —»©)
= —i(x” —y7) [K!(x), K4(9)]6(x° —y0) = 0.

1=1,2,3.
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Therefore, [K!(x), K4(y)]5(x0 —y0) does not contain ST.
The same is proved along similar lines using induction
for the second commutator in (D1).12

*In partial fulfilment of the requirements for a D.Sc. degree.
"Lowell 8. Brown, Phys. Rev. 150, 1338 (1966).

R. F. Dashen and 8. Y. Lee, Phys. Rev. 187, 2017 (1969).

3J. Rzewuski, Field Theory, Vol. 3 (P.W.N., Warsaw, 1969).

4J. Hanckowiak, Acta Phys. Pol. 33, 711 (1968).

SUsing the fact that the coefficients of B(4) are symmetric quasilocal
field, we define the TP of two such fields as T(B, (x,- - - x,,),

B, 01y N=00y —y)B,(xy--x,)

B, (1Y) YO0~ x)B, (V1 Vy) By(Xi- -+ xa) The
generalization for any number of fields is straightforward.

®M. Gell-Mann, Physica (Utr.) 1, 63 (1964).

"T. C. Yang, Phys. Rev. D 2, 2312 (1970).

8D. J. Gross and R. Jackiw, Phys. Rev. 163, 1688 (1967). In this
reference additional assumptions are made for the commutation
relations of currents with Hamiltonian density.

%J. S. Bell and R. Jackiw, Nuovo Cimento 60, 47 (1969); S. L. Adler,
Phys. Rev. 177, 2426 (1969).

D, J. Gross and R. Jackiw. “Construction of Covariant and Guage
Invariant T* Products,” CERN, 1969 (preprint).

"We assume here that [J2(x), 3,4 (»)]

8(x° — ¥°) = iCyp8,J4(y)8 (x — y), which can be achieved by the
redefinition of the structure constants and the symmetry indices.
12§, L. Adler and R. F. Dashen, Current Algebras (Benjamin, New
York, 1968).



Identity satisfied by the d-type coefficients of SU(n)
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Using a very simple approach, we obtain one identity for each SU(n), satisfied by its d-type coefficients.

I. INTRODUCTION

Though much is known about the properties of the Gell—
Mann d and f type coefficients 1=3 that hold for every
SU(n), an identity, specific to a particular unitary uni-
modular group has been given only for SU(3) by Mac-
farlane et al.3 To obtain this identity, they have utlized
the characteristic equation satisfied by the matrix

A= 28 1a;7;. Their lengthy method can be laboriously
used to go on to SU (4),8U(5),...,but a general formula-
tion is very hard to obtain. Also one does not acquire
any insight into these special identities. In this work,
using a very simple reasoning, we are able to write
down these identities—one for each SU(n)—immediately.
The identities we obtain have a neat and compact equiva-

lent form. This is described in Secs. I and II1, In Sec.1V,

we list results for SU(3) to SU(6) derived by our method.
1. PARTICULAR IDENTITIES

We use the following ranges for the various types of
indices.

index type range
a lton
Z lton?—1
a OQtonz—1

The matrices A; of the n-dimensional representation of
the SU(n) group together with the matrix Ag = (2/n)2/2
I,, satisfy the usual multiplication rule?

A, =d,,, + ifabc))\c @

in terms of the completely antisymmetric structure
constants f,, . and the completely symmetric coefficients
dabc'

Now for SU(n),
=0 (2)

€ € A oo (A
qg e, B8, Bn-ﬂ( “1)%51 ( "n+.1)(,Lnﬂﬁn+1
as follows from the fact that each of the A-matrices in
Eq. (2) is n-dimensional (this is consistent with the
notation described before, since the range of the indices
@484+ * is from 1 to » and # is the number of rows or
columns of the A matrices), while both the symbols
oy €3 p.--.g_» which contain antisymmetry in
.l n+1 172 nH

(n + 1) indices must be identically zero. Equation (2)
is essentially the identity we are after expressed in a
very compact form.

In order to express this equation as an identity amongst
the d-coefficients, we have now to replace the product

of the two €/, by a sum of products of § functions, which
when contracted against the matrix elements (A ) will

result in linear combinations of products of traces of
these matrices. These traces can then be developed in
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terms of d-type coefficients. Before we carry this out
in detail (Sec.III), we add a few remarks relevant to Eq.

(2).

(i) This special identity for SU(n) also holds for SU(m)
where m < n, This result, however, is uninteresting,
since it is deducible from known identities for every
SU(n) together with an identity of our type for SU(m).

(i) Whenver anyone (or more) of the indices ay, a,, ..
a, .1 takes (take) the value zero, since (Ao) =

(2/n)1/25 4, we shall have at least one contraction on
the two € symbols. When we express the product of ¢’
with one contraction as sums of products of 6-functions,
we obtain zero identically. Thus in Eq.(2) we may re-
place an a-type index by an i-type one. This we shall
henceforth do and replace Eq.(2) by

;)
5 S

i
7+l
%8 an

(iii) The lhs K fiyi of Eq. (3) is evidently completely

symmetrical in the Tndices f15%g, - - This remark
will be useful later.

vl

I1l. IDENTITY EXPRESSED IN TERMS OF THE
d-TYPE COEFFICIENTS

In this section we try to express the tensor K in terms
of the d-type coefficients of SU(n). We expand the pro-
duct of the two €/, in terms of sums of products of the
6 functions and simplify to arrive at

(— 1)N-Np" =Ny

Kiioi =
1z N Ny !Nzt Ny12%2. 3%. . . NN
X s[Tr(xilx iz) Tr(xisxi4)- .- Tr(xizﬂz_lxiwz)
x Tr(x,; i, 2 zNzﬂx,«zNw). AR 4)
where
N=n+1 (5)
and the summation is over all partitions of N
N=2.Ny + 3Ny +--++N-Ny (6)

into parts > 15 and S indicates that we have to symme-
trize in the indices i,, 4y, . . -, iy and divide by N!, The
structure of the quantity within the square brackets in
Eq. (4) follows that of the partition in Eq. (6). Evidently
on account of the complete symmetry of the tensor X,
we may assume that the various traces occurring in
Eq. (4) are also completely symmetrized.

We finally show how one can express the traces
S Trix; ;.. ) as products of the d-type coefficients.
172 r

Copyright © 1973 by the American Institute of Physics 630



631

The procedure will become evident from the following
four equations®

S Tr(x A,) = 26, @
S Tr(A A,A,) =2d,,,, ®)
STr, o +**ro ) =Sldoas daap " *da, a5
xS Tr(A,,lkbz...hbr)], (9)
STrO A, . Ay, VO =8d,,0dy o5 40, o s,

XS Tro\,,lxb2 x,,rxazm)]. (10)
By repeated use of Eqgs. (9) and (10) we can reduce the
symmetrical trace of any number of A matrices to that
of two or three matrices when we will apply Eq.(7) or
(8) as the case may be. Substitution of expressions ob-
tained from Egs. (7)-(10) in Eq. (4) will finally lead to
the identity we are after. Note that all these steps are
straightforward, each term in the identity comes from

a known source term in Eq. (4) (each source term corres-
ponds to a given partition of N =# + 1), and has a well-
defined coefficient as long as the symbol S is used.

This coefficient will be the coefficient in Eq. (4) multi-
plied by 2"2*¥s*"*NN ariging from the traces. Note also
that in an actual computation, the symmetrization in
Eqgs. (9) and (10) may be dropped. One writes just one
product of the d-type coefficients and performs symme-
trization in all the N-indices after substituting the ans-
wers in Eq.{(4). Also while performing symmetrization
of Eq. (4), we may generally need quite fewer than N!
terms for various source terms.

IV. SPECIFIC CASES

After illustrating explicitly the ealculation for SU(3),
we shall quote the results for SU(4) to SU(6).

(i) sv@):

bigigiy — Coyoyagald ﬂlﬁzﬂi‘lﬁ“()\ 1)03131 (Aiz)agﬂz
X ) @*;)
o, B 4 o, B
=—6STrly, ;. ) + 3S[Tr@, ) Tri, ;)]
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——1zs(d,,a,,a)+lzs(6 4)
=0, (11)
which can be written as
dilizadi3i4a+ dilisadizi4a + diliqadizisa
— (6"1"26"3"4 + 5,.1,.35,.21.‘1 + 6"1"46%"3) =0. (12)

This is the same result as obtained previously by
Macfarlane et al.in our notation.3

(il) SuU4):

35(d, d; 4 a)

472 57172 15

58(6,-1,- =0,

lll)

ey ’3' IPLEST

where 15 and 10 below the closing square brackets indi-

cate that in order to perform symmetrization, this many
terms will have to be written down and the answer divid-
ed by this number. Note that the numbers 15 and 10 are

much smaller than 5.

(iii) SU(5):

ﬁs(d, ia, ;3i4a2di5iea3da1a2ﬂ3 15

- 98(6 i, digioiid)

_ 4s(d, i), T 3806, .8, ,8,,) =0
(iv) Su(e):

308(d, ; ,. ,aiqazdisisasdi7a,bda2asb)ms

— 423(6 d; ,4,,1‘1 igigay, Tigaja, /g o
- 353(d, 1 a 131 ﬂd1516z7)105
+ 355(6;'11'2 13i4d’5‘¢,’7)105 =0.

'R. E. Cutkosky and P. Tarjanne, Phys. Rev. 132, 1354 (1963).

.M. Kaplan and M. Resnikoff, J. Math. Phys. 8, 2194 (1967).
3A. J. Macfarlane, A. Sudbery, and P. H. Weisz, Commun. Math.
Phys. 11, 77 (1968).

“In the usual notation, the multiplication rule appears as
Ny = (e + i) N +(2/n)5 .

5This restriction is due to the tracelessness of the A matrices.
Recall that in Eq. (3) only i-type indices are free.

There are many different ways of expressing these symmetrized
traces. Ours is the simplest and involves no f-type coefficients.
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In this paper we explore the Vlasov conjecture on the relationship between bifurcation points and
phase transitions. Because of the availability of the exact results of Ruelle, we focus our attention on
the Kirkwood—-Salsburg hierarchy, and recognizing that the first equation in this hierarchy is of the
form of a Lichtenstein-Lyapunov nonlinear operator equation, we use a fundamental theorem of
Krasnosel'skii to determine, under a suitable closure, bifurcation points for the same system
considered by Ruelle. A special example is treated—that of a one-dimensional system of hard rods—
and our main conclusion follows from the results of this study: namely, that ““in this one-dimensional
system’’ the bifurcation point does not seem to be related to the onset of a phase transition.

1. INTRODUCTION

The class of problems with which we shall be concerned
in this paper deals with an approach to the study of
phase transitions initiated by Kirkwood! and Vlasov? a
generation ago. These authors suggested that changes
in the behavior of solutions to certain of the nonlinear
integral equations comprising the BBGKY hierarchy
might be associated with the onset of a phase transi-
tion, In order to implement this suggestion,both authors
derived instability criteria, Kirkwood using Fourier-
transform methods and Vlasov using bifurcation theory,
and, subject to the uncertainty involved in truncating the
hierarchy (that is,use of superposition approximation),
it was believed that the incidence of a phase transition
could be identified with the point at which a well-defined
solution exhibited an abrupt change in behavior. A prob-
lem of interpretation arises almost at once,however,in
that it is very difficult to establish a one-to-one cor-
respondence between the two criteria,although some
progress has been made in simple cases.3 Indeed, given
the difference in approach of the two authors, there is
no a priori reason to expect that the points of instability
predicted by the Kirkwood theory are necessarily the
same as the bifurcation points of the Vlasov theory. Of
more consequence, however, is the observation that it
has never been proved conclusively that these criteria
represent either a necessary or a sufficient condition
for the onset of a phase transition, a difficulty which is
compounded by the fact that recent studies have shown
that there can exist isolated branches of solutions to
nonlinear problems which cannot be identified using
standard analytical techniques.? The point of the latter
remark is that, conceivably, a phase transition, viewed
as a problem in nonlinear analysis, might be charac-
terized by a switch from one branch of solutions to
another, completely isolated branch, rather than by
changes of the kind suggested by Kirkwood or Vlasov.

Recently, several authors® have re-examined the pos-
sibilities of the Kirkwood~-Vlasov approach,bringing to
the problem a variety of new analytical techniques com-
plemented by a knowledge of recent results in the theory
of classical fluids and phase transitions. While many of
the results obtained by these authors are indeed sug-
gestive, it must be pointed out that,for example,the
exact relationship between bifurcation points on the one
hand and phase transitions on the other has never been
demonstrated. It is this task which is the objective of
the present paper,and it is carried out in the following
way. We recall that Ruelle, in his study of the Kirkwood—
Salsburg hierarchy of linear integral equations, was

able to obtain a bound which guaranteed the existence of
a single phase for all values of the activity less than
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the one specified by the bound. At the same time,
Groeneveld,® Penrose,” and Lebowitz7 had obtained
both upper and lower bounds on the radius of conver-
gence of the virial expansion for certain potentials, and
when this work was correlated with that of Ruelle,8 it
was found that the Ruelle bound corresponded to the
lower bound on the radius of convergence. With these
exact results at our disposal, we analyze here the first
equation in the KS hierarchy, and note that this equation
can be written formally as a Lichtenstein—Lyapunov
operator equation, We obtain the linear operator equa-
tion whose eigenvalues determine the behavior of the
nonlinear one, and then, after introducing a closure,we
study the possibility of bifurcation for the same sys-
tems considered by Ruelle. As a concrete example, we
determine explicitly the relationship between bifurca-
tion points and bounds on the radius of convergence for
a one-dimensional system of hard rods,a system for
which detailed results are available. Our conclusions on
validity of the Vlasov assumption follow from these
studies,and are presented in the final section of this
paper.

2. FORMULATION

We consider a classical, grand canonical ensemble of
monatomic molecules in a volume V with activity z and
pair intermolecular potential ¢. For this system,the
first equation in the Kirkwood—Salsburg hierarchy is

plr) = 2<1 + ‘Z{ ,717 Jv K5 (9),)0(9),8y1dyo" 'dx,,>,

(2.1)
where
@Wn = @192, »Yn)s
Kir; (),) = 11 fexp(—Bo(lz = y,1) 1]
=11 £y = 3. (2.2)

Here, p(y), is the n-body distribution function,and

f(lr — ;1) is the Mayer f-function. (In this equation, and
in what follows, we use the notation suggested by Ruelle
in his book.8) By introducing the n~body correlation
functions g(y), , where

g, =), /p(¥1)p(y3) ** 0(¥,)s (2.3)
Eq.(2.1) can be written as
Copyright © 1973 by the American Institute of Physics 632
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pir) =2 [1 + f)l L fo K3 (3),)0(1)p(y2)

*p(y,)dy dy,” dz,‘} » (2.9
where

K'(r;(y),) = K(r;(»,)g(»),-

We notice here that K’('r ) } is symmetric with res-
pect to (y),. Now, Eq. (2.4) is an inhomogeneous non-
linear mtegral equatlon which can be transformed to a
homogeneous equation by defining a new function p’(¥) =
p{r) — a for suitable choice(s) of constant o. By insert-
ing p(r) = p’(r) + « into Eq.(2.4) and taking into account
that K'(r; (y) ) is symmetric with respect to (2) we ob-
tain, after grouping terms of each order of p’,

(2.5)

p'r) +a= z< E;i i' n K5 (9),)dy, " 'an)

M8

+z art [, K'(r3(9),)0"(y1)dy; " "+ dy,

2
[
Ly

1
n!
C
+2 2R an2 LK (9),)0' (910" 0 g)dy; - - dy,

n="

— [0

)

+..., (2.6)

where C* =n!/[m!(n —m)!]. Therefore, Eq.(2.6) can
be written as follows:

p,(,_a) + a =z(1 + 2 '% a® fVK'(Z;(X)n)dl’l"‘d}_’,,)

+2 2 fy K )0 (g) Pl My dyy, (2.7)
where
Cn
K3, = T m,am Sy K03 @) mdyps -+ 3y e

(2.8)
By choosing « such that

o0
o=z [1 + El rTl'_ ar fVK’(1_'; (v),)dy, "+ 'dxn] , (2.9)
n= ¢
we obtain the following homogeneous equation:

) =2z Zi o K 0),)0"(y,)dyy - dy,.  (2.10)

We now observe that this equation is similar in struc-
ture to the standard integral power series equation. An
integral power term of order n relative to the function
f is defined as

L(f) = [K($,915955 - -3 )" (8) £ yy)
X ...f"‘m(ym)dyl--'dym (2.11)
if 0g + 0y +-°* + a, =n,where a5,0,4, ... ,a, are

nonnegative numbers, and an integral power series is a
summation from n = 1 to infinity of terms of the type
(2.11). Returning,then,to the representation (2.10), we
note that the right-hand side is an integral power series
relative to the function p’. In operator notation, Eq.
(2.10) can be written as

p'(7) = zAp'(r), (2.12)
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where the operator A is defined as:
AR =T Sy K @) (@a) 0 gy dy,e

ows

(2.13)
This operator A, in the theory of nonlinear operator equa-
tions, is referred to as the Lichtenstein—Lyapunov inte-
gral power series operator. It is perhaps worth men-
tioning here that the integral power series equation,
being an integral equation itself, is quite different from
the usual power series expansion of a function in terms
of some independent variable, e.g.,the Mayer power
series expansion of pressure p in powers of fugacity z.

Before one can make use of the various theorems on
qualitative properties of the solutions of the operator
equation (2.12), derived by Krasnosel'skii®10 and Vain-
berg,1 it is necessary to establish first the conditions
under which the operator A is completely continuous

in function space.

Let C be the space of continuous functions on V,where
V is a closed bounded set in a finite-dimensional space.
We define the norm in C as

Il = sup [1 £(2)1]. (2.14)
x €V
For simplicity we also introduce the notation
Jle8® — 1|dr = ¢(B) (2.15)
and
J(e8®) —1)dr = ¢’(p). (2.16)
By assuming that ¢’(8) < © and sup g(x) d < ©o,we

have

|a|m-n

K" (r; ), ) < mE

1
=, nl{m—n)!
X Jo K5 ()| g0 ml et dy

< Z} n——_——_'(m T dla|m= vaK(" @)y, dy,,

m=n

Ms

men ""_(m_—nTT dla| ™ |K@;(y),)|

x 0 f |K(rsy)ldy;
i=n+l

=—d|K(7 ) mE [1/6n —n)1]lalmnc(pg)mn

= L dlxtr; ) explc(p)] al. (2.17)
Thus,
Iapl< 3 Il fy K73 ), ldyy - dy,

< :D —P-"— d explc(®)|al] [, |K@; () dy, - dy,

; Lol § expictey i e

= d exp[c(B)| a1] exp[c(B)lpll ]

This shows that |Apll is bounded for bounded p provided
that ¢(B),d,and a < ©.
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For equicontinuity, let us look at |Ap(r) — Ap(r’)li:

fap(r) — apr)Hll = |l f‘; f K" (9),) — K703 (9),)]

x p(y1)p(ya)** ply, )y, " < - dy,|

< fi lol® [, |K"(rs(9),) —K"(r';(),)|dy, - - dy,
< zi lloll= mf} -M”W §, 1K@ 6),) — Ker's5) )]

=y nllm
X | g(y) pldy, - dy,,

dlalmn
s nlim —n)!

z loll» i

X [y 1K@5(3) ) —K@'5(0) ) | dy1° " dy e

We now suppose that the pair potential ¢(r) is continuous
in intermolecular distance ». Then K(r;y,) = f(lr — y41)
is continuous as a function of |7 —y, |, andK(r; (y),) is
continuous as a function of |r —y, |, |r —y,l, ... , |7

— Y |. For a finite volume V in three-dimensional
Euclidian space, K(r; (y),) is therefore uniformly conti-
nuous in V# C IR3" "By taking into account the triangle
inequality

lr =712 |lr =yl = lr' = yl],

we conclude that for given €’ > 0,there exists a § > 0
such that the condition |» — 7’| < 6 implies that

K@ (9),) — Kr'5(9),)] < €.

Thus,
laplr) — aptr )l < 53 o dlpll
x E =1 —-n)v o] m e’ (mesV)™

= E edl pl"(mesV)» = mZ) (m

=i (| | mesy) ==

ii e’dll pll*(mesV)*(1/n!) exp(| @ | mesV)

¢'d exp(]l p | mesV) exp(| a|mesV)
= e'd exp[mesV(ll pll + [al)].

Therefore, for given € > 0,there exists a 6 > 0 such
that the condition lr — 7 |< 6 implies that | Ap(r) —

Ap{r")ll < € if we choose €’ to be such that

¢’ = ¢/d exp[mesV(y + |al}],

continuous follows from the Ascoli—Arzela theorem.
Hence, A is completely continuous on a bonded subset
of C prov1ded that c(B), max[g(y),],and |a]| <« and
¢(7) is continous.

3. BIFURCATION THEORY

An examination of the homogeneous integral equation
for p’(r) reveals that p’(r) = 0 is a solution of Eq.
(2.10); this solution shall be referred to as the trivial
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solution, and it corresponds to the choice p(r) = a.
In accordance with the notation of Krasnosel'skii, one
identifies the trivial solution with the null vector 6,
so that the operator equation (2.10) is written:

ZA0 = 0.

For small values of the parameter z, it is straightfor-
ward to show that the null solution is unique. It is in-
teresting to see if one can go beyond this result, how-
ever,and ask whether,for increasing values of the para-
meter z,starting at some value, say %9, 2 nonzero golu-
tion of Eq (2.10) makes its appearance in the nelghbor-
hood of 6. One says that z, is a bifurcation point of Eq.
(2. 10) if for every € > 0, 5 > 0 there exists an eigen-
function p of the voperator A such that the norm || p| < 8,
and the eigenfunction p corresponds to a characteristic
number z such that |z — z,| < e.

If we now adopt the point of view taken by Vlasov,then
the emergence of a new solution (or solutions) p’() at
the bifurcation point z, may,in some sense, be associ-
ated with the limit of stability of the phase described

by p’(r) = 0. Given this interpretation and the availabi-
lity of quite general theorems on bifurcation of non-
linear operator equations, it is our intention to study
the possible bifurcation of Eq.(2.10),and to compare
the results with the rigorous results obtained by Ruellel2
on the one hand,and Groeneveld® and Lebowitz and Pen-
rose? on the other. To carry out this program,we use
the following fundamental theorem of Krasnosel'skii:

Theorem 2.1 (Ref.9,p.196): Let A be a completely
continuous operator having a Fréchet derivative B at
the point 6, and satisfying the condition

Af =06,

Then each characteristic value z, of odd multiplicity of
the linear operator B is a bifurcation point of the oper-
ator A,and to this bifurcation point there corresponds
a continuous branch of eigenvectors of the operator A.

Krasnosel'skii shows that for the Lichtenstein—Lyapu-
nov operator A,the Fréchet derivative B at the origin
of the space C is the linear integral operator (in our
notation):

Jr K 3 91)0"(21)dy; - (3.1)
Hence, according to the above theorem, the bifurcation
points of the nonlinear operator A are determined by
the eigenvalues of odd multiplicity of the linear opera-
tor equation

Bp'(r) =

ZBp =p. (3.2)
That is, we have obtained the equation from which the
bifurcation points of the first KS integral equation can
be calculated, at least in principle.

An examination of the structure of the kernel in Eq.
(3.1) for the casen =1,

K"(r;y1) = mz-';l (,;—11—). a™l [y K'0r5 (9) )dye: " " dy,

2 =T ¢ S KO0 8@ by s (3-3)

reveals the essential role played by the g(y), ,the n-
body correlation functions. This is,of course,the point
in the analysis where n-body effects enter explicitly,
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and we note that the exact bifurcation point can be deter-
mined rigorously only when the whole hierarchy of KS
integral equations is solved. In other words, the exact
determination of the bifurcation point is linked to the n-
body problem. This difficulty, so fundamental in its
implications, not only arises in the present analysis,but
is common to all studies of the Kirkwood—Vlasov type
which focus attention on one equation of the BBGKY
hierarchy. Such an equation is always coupled to an
infinite hierarchy of nonlinear integral equations,re-
gardless of the representation considered, with the
consequence that before progress can be made, some
approximation must be introduced to truncate the hier-
archy. The point of view adopted in Refs.1,2,3,5 is
that, although one cannot obtain exact results on the be-
havior of the hierarchy without solving the n-body pro-
blem, nonetheless one might be able to obtain an essen-
tially correct description of this behavior by a fortun-
ate choice of closure. Since it is our objective in this
paper to determine the relationship between results ob=
tained using bifurcation theory and exact results, we now
introduce a closure, suggested by the structure of the
kernel K” in Eq.(3. 3). In particular, we note that the
kernel K”,as expressed in Eq. (3. 3),is a summation of
integral terms, with the kernel of each term a product
function of K(r;(y),) and g(y),. Furthermore, it is to be
noted that K(r»; (y),) is the product of » Mayer f-functions,
and, as illustrated in Fig,1,this function tends to peak
very sharply as the number » increases and goes to zero
very quickly (to ~2 in reduced units) as the intermole-
cular distance increases. On the other hand,for short
intermolecular distances g(y)” is nearly zero,particu-
larly as »n increases. These considerations on the com-
posite behavior of K(r;(y),) and g(y), , augmented by the
observation that in a one-dimensional hard-rod system
the product K(r;(y),)g(y), is strictly zero for n > 2,
suggest that the introduction of a closure which mini-
mizes the importance of higher-order terms in Eq.(3.2)
may not be serious. To explore this possibility, we re-
call that for a fluid phase (gas or liquid) the n-body cor-
relation function approaches unity as the distance be-
tween particles becomes large. Therefore,as a first
approximation on the g(y), we set g(y), = 1.

With this approximation, we have
o0

1
K'r3y) = 5 o —qyr @™z =D

x Ii Jorlr = yi)ay,

o0

=flr—nb Z (“wT;l—ITT amlc(g)mi
=f(r —y,1) exp[c’(B)a], (3.4)
and the linear equation (3.2) becomes
p'r) =2 [, f(lr — ;1) exp[c’(B)alo’(y,)dy,.  (3.5)
Also,by Eq.(2.9) o is determined by
a = z(l + %}l ﬁl,— ar [, K(r; (¥),)dy, " - 'dxn>
=z (1 + nZ=>1 n—l' a"c’(B)")
(3. 6)

=z exp[c’(B)a].

To look for eigenvalues of Eq.(3.5),let p’(r) = p’,a con-
stant. Then Eq. (3. 5) reduces to
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FIG.1. Mayer f-function,f?,and f 7 as functions of re-
duced intermolecular distance »* for Lennard—-Jones
potential at reduced temperature T* = 1,2,

1=z exp[c’(B)a] [, Fllr —yi1)dy,

= zc'(B) exp|c’(B)a]. (3.7
By Eq.(3.6), Eq. (3.7) becomes
ac’(B) =1,or a = 1/c¢’(B).
and from Eq.(3.86),
z = a/explc’(B)a] = elc’(B) L. (3.8)

Hence we conclude that the linear operator equation
(3.2) has a single eigenfunction p’(¥) = p’, correspond-
ing to a uniform density solution, and a simple eigen-
value given by Eq.(3.8). Given this information and the
Krasnosel'skii theorem, we can identify Eq.(3.8) with
the bifurcation point of the nonlinear operator equation
(2.11).

The bifurcation point obtained can be compared with the
result obtained by Ruelle in his rigorous analysis of

the whole KS hierarchy.12.8 Ruelle obtained the bound
|z| < e~288-1¢(B)"1 (henceforth,the activity corresponding
to this bound will be called the Ruelle point), and showed
that when |z| < e 28-1¢(g)"1 the grand partition func-
tion has no zero; 8 therefore,according to Yang and
Lee,13 the system has no phase transition, It is im-
portant to note that the Ruelle point guarantees the exis-
tence of a single phase for values of |z| less than

e 288-1¢(8)"1, In other words,a phase transition may
occur only if |z| = e-28B-1¢(8)1, at least,is satisfied.

We now show that the bifurcation point obtained above,
Eq.(3.8),occurs at or beyond the Ruelle point. Re-
turning to Eqgs.(2.15),(2.16),we see that

cB) = lc'(B)l.

Therefore, from the fact that B > 0, we have the re-
lationship

e 285 1c(B)t < ete(P)t < leter(B) Y.
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This result suggests that for the particular closure
£(y),, = 1,there does exist a simple relationship be-
tween the bifurcation point and the Ruelle point: In par-
ticular, the bifurecation point is always greater than or
equal to the Ruelle point. For the case of purely re-
pulsive potentials,this relationship is even simpler.
Here we have that B = 0 and c(B8) = |¢’(B)!, and there-
fore the |z| obtained from Eq.(3.8) is exactly the same
as the Ruelle point. Moreover,for purely repulsive po-
tentials ¢’(B) < 0,and therefore by Eq.(3.8) we have z
< 0. This means that the bifurcation point cannot lie on
the positive real axis for purely repulsive potentials.
One might be tempted to conclude from this that there
will be no phase transition for a system of molecules
interacting via a purely repulsive potential,but it should
be emphasized that the above result is a consequence of
the analysis which followed from the assumption that
g(y), = 1. In fact, it will be shown in the next section
that for a certain purely repulsive potential the bifur-
cation point can lie on the positive real axis but that
this occurrence has nothing to do with a phase transi-
tion,

4. ONE-DIMENSIONAL SYSTEM OF HARD RODS

The relationship between bifurcation points and bounds
on stability can be made more definite by considering a
specific example, a system of one-dimensional hard
rods of length a. Strictly speaking, this class of poten-
tials is not accessible to our study, given the conditions
on complete continuity of the operator A. However, one
can proceed by identifying a continuous potential func-
tion which,in a suitably defined limit,yields the hard-
rod potential; in particular, we consider the potentials

qb(‘r):{mm’ 0Osvr<a+1l/m—1

1/r—a+1)", rza+l/m—1
in the limit when m -» ©. For this one-dimensional hard-
rod system, ¢’(8) = — 2a, and therefore by Eq. (3. 8),

z =—1/2ea = —0.184a"1.

We note in passing that in bifurcation theory one deals
with z explicitly, rather than with the absolute vaiue of
2; 80 we conclude that the bifurcation point lies on the
negative z axis. Furthermore,in agreement with the
result obtained in the previous section relative to a
system of molecules interacting via a purely repulsive
potential, the absolute value of z obtained using bifur-
cation theory is the same as the bound obtained from
the Ruelle analysis.

Our result for the hard-rod system can be compared to
the one derived by Penrose in his analysis of the radius
of convergence of the virial expansion;there the lower
bound on the radius of convergence R was found to be
0.184a"1, whereas the upper bound for R was found to
be 0.368a 1. Furthermore, Penrose found that the func-
tion p(z) = kT 2 b,z was analytic on the positive real
axis,but had a branch point at z = —0.368a"1. Since the
hard-rod system exhibits no phase transition,a result
first obtained by Tonks,14 Penrose concluded that the
divergence in the fugacity expansion for real z > R has
no physical significance. In light of the above analysis,
we conclude here, similarly, that the bifurcation point
for this system has no physical significance as regards
phase transitions.

A strong result that supports this conclusion can be ob-
tained by noticing that for a hard-rod system K(r;(y),)
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g(y),) = 0 for n > 2. Hence, the linear equation (3. 2)
becomes

)=z fV‘(K(r;yl)
+ afv K@r; (5)3) g%y, — yll)dy2>p'(y1)dy1-

After setting p’(r) = p’ and taking into account the fact
that K(r; (y)5) g(»), = 0 except when |7 — y, |, |7 — y,|
<aand |y; —y,| > a,one obtains

a a a+
1o J5 vy 2 f) [ (1)1 gy
a+
z = 1/(—2a + Zafoafa ylg(z)(ylz)dylzdyl). (4.1)
In the low density limit

g(z)(ylz) ={0’ Y1z <a,

1, y,p=a

and because of the geometry of hard-rod configurations,
the value of g(r) exceeds unity when 7 becomes greater

than a. One would expect, therefore, that,for the second
term in the denominator in Eq.(4.1),

a raty @ paty,
2 fo o &@yi)dviadyy >2 fo [, dyygdy, =a2.

This shows that for the hard-rod system, one might find
a bifurcation point on the positive real axis, But,as
mentioned earlier,the hard-rod system has no phase
transition, and therefore it appears that the bifurcation
point has nothing whatever to do with the signalling of

a phase transition.

5. CONCLUSION

The principal objective of this paper was to investigate
the relationship, if any, between bifurcation points and
the signalling of a phase transition. In our analysis, we
focused attention on the first equation in the Kirkwood-
Salsburg hierarchy, an equation which was recognized to
have the form of an integral power series equation.

Such an integral series defines a nonlinear integral
operator,usually referred to as the Lichtenstein—Lyapu-
nov operator, and the possible bifurcation of the full non-
linear equation was investigated by determining the
eigenvalues of an associated linear operator equation.

In particular,by a fundamental theorem of Krasnosel'~
skii, the bifurcation points of the full nonlinear equation
are just the eigenvalues of odd multiplicity of the as-
sociated linear equation.

In order to obtain well-defined estimates of the bifur-
cation point for specific systems, it was necessary to
introduce a closure. Our choice of closure was moti-
vated by the structure of the kernel K” and, once intro-
duced, led to a simple relationship between the absolute
value of the bifurcation point and the Ruelle point,a
relationship which,for the case of purely repulsive po-
tentials, reduced to an identity. The bifurcation point
itself, when related to the activity, was found to lie on
the negative real axis. We then considered the specific
case of a one-dimensional system of hard rods, for
which exact bounds on the radius of convergence of the
virial expansion had been determined by Penrose and
Lebowitz,8 and it led to the interesting result that the
bifurcation point was related to the lower bound (rather
than the upper bound as might have been expected) on the
radius of convergence. Since,for this system,the bi-
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furcation point could be located on the positive real axis,
and since it is known explicitly that a one-dimensional
system of hard rods does not exhibit a phase transition,
the conclusion was reached that “for this one-dimension-

al system” the bifurcation point seemed to have nothing to

do with the signalling of a phase transition. Indeed,the
overall conclusion one reaches in the present study is
that there may well exist a fundamental relationship
between bifurcation points, on the one hand, and bounds
on the radius of convergence,on the other. However, in
light of the specific example treated in this paper,the
bifurcation point seems to be related to a lower bound
rather than an upper bound on the radius of convergence,
which, together with the location of the bifurcation point,
'would seem to invalidate the basic assumption of Vlasov,
namely,that there may exist a fundamental relationship
between bifurcation points and phase transitions.

Finally, it should be emphasized that the above analysis
has been carried through subject to the closure defined
by setting g(y), = 1. Possibly,then,the above conclu-
sions should be tempered by the statement that if one
were to impose other closures,the bifurcation point
might shift around on the real activity axis, perhaps even
coinciding with an upper bound on the radius of conver-
gence for certain systems. A less delicate way of phras-
ing this possibility would be to suggest that the use of
our closure so mutilates the nonlinear equation under
study that, quite possibly,the results obtained in this
paper are misleading, if not incorrect. The seriousness
of this objection can be neutralized, at least in part, by
directing the reader's attention to a truly remarkable
feature of the Krdsnosel'skii theorem cited in Sec. 3.
Essentially,this theorem states that the possible bifur-
cation of the full nonlinear integral operator is deter-
mined by an associated linear operator equation;for the
specific case of the Lichtenstein—Lyapunov operator, the
associated linear operator is,in fact,the leading term
on the right-hand side of the full nonlinear operator
equation. Now, whereas one might expect that the use of
different closures would affect higher-order terms in
the integral power series,perhaps in a dramatic way
(although from our arguments in Sec. 3, we do not be-
lieve this to be the case),the effect of these changes on
the linear term is expected to be small. That this is
reasonable may be inferred from the following calcula-
tion, Suppose, instead of introducing a “horizontal”
closure, one introduces a “vertical” one;that is, suppose
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one truncates terms beyond the first linear one in every
equation of the Kirkwood—Salsburg hierarchy. It turns
out that one can carry through an analysis on this trun-
cated set of equations in exactly the same way that
Ruelle analyzed the full KS hierarchy. The infinite vol-
ume limit can be constructed and a bound obtained
which can then be compared directly with the exact one
obtained by Ruelle. One finds the discrepancy between
the two bounds to be 1/e. Phrased differently, it seems
that n-body effects are imbedded in the Kirkwood—-Sals-
burg hierarchy in such a way that the difference be-
tween considering these effects explicitly, as Ruelle did,
and bypassing their importance almost entirely,as was
done in the above calculation, is a factor of 1/e. While
not conclusive, this observation, coupled with the fact
that the structure of the kernel K” itself suggested the
closure adopted, lends support to our premise that the
principal conclusions of this paper may not change in an
essential way with a different choice of closure,
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We construct systematically all the unitary irreducible representations of the group SU(2,2) which

are realized on the two manifolds Z and Z introduced in Paper I of this series; these include all the
degenerate representations at present known apart from the exceptional or ladder series. This partic-
ular realization of the global theory displays the Poincaré subgroup in a simple form, and we examine
the reduction products under this group. We find that the degenerate first series contain only space-
like momenta and a single spin fixed by the invariants of SU(2,2); the degenerate second series on the
other hand contain only spinless representations of P, while the nature of the momenta which appear

depends on the particular series concerned.

I. INTRODUCTION

In the third paper of this series! we study all those
representations of SU(2, 2) which are realized upon the
manifolds Z or Z that were introduced previously. Since
these are degenerate representations (that is, they are
defined over manifolds of lower than maximum dimen-
sionality), they do not in general belong to the principal
series and hence will not enter into the generalized
Plancherel measure.? Despite this, they are of consider-
able interest: both mathematically, because the well-
known groups SL(2,C) and SL(2,R) have no degenerate
series except the trivial representation, and physically,
because all the applications of the representation theory
of the conformal group (as opposed to its Lie algebra)
have used degenerate series exclusively. We find that
these manifolds carry all the degenerate representa-
tions that are at present known,3 with the single excep-
tion of the ladder or exceptional series; fortunately this
has been fairly well covered4.5 in the literature—at least
algebraically—and so its omission here is less serious.

Let us recall the nature of the phenomenon of degener-
acy. Any representation of a group G is defined by
operators on a space of functions over some homogene-
ous space of the group; and we know that all such spaces
are of the form G/H, where H is a closed subgroup of G.
Consider a sequence of such H; which satisfies H, C H;
for ¢ <j;and let H, be the subgroup consisting of the
identity alone. Then G/H o = G,and upon G itself is de-
fined the (reducible) regular representation. Proceding
further, we know of the existence of H; such that G /H

is the carrier of the principal series of representations
of G; we can extend the functions on G/H 1 to functions
on G itself by simple invariance or homogeneity require-
ments, but they will not in general be Haar-square-
integrable on G. Now consider H, D H,; this defines a
manifold of lower dimension than G /H 19 but which is
still a perfectly possible carrier space for representa-
tions of G. Such representations are termed degenerate;
if we insist upon regarding them as defined over G/H 11
we find that the dependence of the functions upon one or
more variables is trivial, and so they are not square-
integrable over that manifold.

A simple example of such degeneracy is the one-dimen-
sional (unitary irreducible) representation of G =
GL(2,R) realized on the space G/G, and given by

7 = | detr|i[sgn(detr)]c, 7 €G.
Slightly more complicated examples are to be found in
Ref. 6, Chap. I1I, which treats the sequence of increas-
ingly degenerate series of SL (n, C) specmed by the
sequence of subgroups H, C Hy C

In the present paper we are concerned with two distinct
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degenerate series of § =~ SU(2,2). In paper I we intro-
duced a subgroup A of § (which corresponds to what we
have called H, here) which defined a manifold Y, and
found that there were actually two distinct groups K and
X which contained A and hence defined each a submani-
fold of Y which we called Z (zee) and Z (zeta) respec-
tively, neither of which was a submanifold of the other.
(Notice the interesting feature that the sequence of sub-
groups H; has branched into two). In that paper we did
not make use of these manifolds per se—they were de-
fined merely as stepping-stones to Y—but they clearly
satisfy the criteria for carrier spaces of degenerate
representations, and we now investigate them in that
light,

Because of the very much simpler structure of these
representations when compared with those of the prin-
cipal series, we are able to treat them systematically.
It is clear from our previous remarks that degenerate
representations do indeed exist with these manifolds as
carrier spaces; we therefore have only to investigate
the twin problems of unitarity and irreducibility. We
do this by deriving systematically all possible Hermi-
tian forms which are invariant under the postulated
representation operators. Suppose that for a given set
of parameters specifying the representation (i.e., Casi-
mir operators) there exists only one such form: Then
if it is positive-definite, it constitutes a scalar product,
and the representation is unitary; the absence of an
alternative form implies the absence of operators com-
muting with all the representation operators, and demon-
strates its irreducibility. If we find two or more such
forms, the representation is reducible, and we must
display explicitly the invariant subspaces, but the argu-
ment is very similar,

There is, of course, no objection to this procedure for
the principal series of representations—indeed Gel'fand
uses this method in Ref. 7 to construct those of SL(2,C)
and SL (2, R )—but the manifold ¥ was of too great a com-
plexity for us to use it with ease (recall that the prin-
cipal discrete series d, is sixfold reducible!) and so

in Papers I and II we used more specific theorems to
obtain the representations. The advantage of the proce-
dure here, when practicable, is that it ensures both irre-
ducibility and completeness; but it does not, of course,
mean that there do not exist other degenerate represen-
tations, defined over other carrier spaces. As we have
remarked already, the exceptional series is not defined
over either of the manifolds examined here.

Section II then starts by deriving all possible invariant
bilinear forms on spaces over the four-dimensional
manifold Z, which is essentially Minkowski space, by a
method which is the exact analog of Gel'fand's treat-
ment of SL(2,R) in Ref. 7, Chap. VII; with a knowledge of
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these we can then write down all the unitary represen-
tations in the degenerate second series. Not surprising-
ly, they are all degenerate representations of the Poin-
caré group too; they are spinless. As an exception to
the general rule that they do not appear in the principal
series, two of the representations (which we call d’g*)
turn out to be special cases of the discrete series
Section III treats the degenerate first series in a simi-
lar way, although the analysis is less straightforward,
deriving as before a continuous series, a complemen-
tary, and (this time) two discrete. We find that when
restricted to the Poincaré group, only spacelike momen-
ta occur, while the spin is fixed by the Casimir opera-
tors of SU(2, 2). Section VI summarizes our results and
compares them with those of other workers—in particu-
lar with the analysis of Yao.3 We find some disagree-
ment. Finally, two appendices treat incidental material
which is made use of in the body of the paper.

We retain most of the notation and conventions of Papers
I and II; in particular, the subgroups and matrices in
Paper I, Sec. 2, and their complexifications (needed for

a study of the reducibility of the discrete series) from
Paper II, Sec.2. There is one slight change: Lest the
similarity of the type used to denote Z (zee) and Z (zeta)
give rise to confusion, we have added a caret to Z (zeta)
defined by (I.9) or (15), and in this paper denote this
manifold by Z. We have introduced a new notation and
nomenclature for the various degenerate series which
is an obvious extension of the systematic notation of
Graev for the principal series of U(p,q), and is intended
to be clearer and more specific than the current ten-
dency to call every series the “most degenerate” and
ignore the branched structure of the sequence of sub-
groups H,.

Il. SECOND DEGENERATE SERIES

The degenerate second series of representations are
defined on the space H, of functions over the manifold

Z of (I.8). The transformation law under ¢ € § has been
given in (L. 13):

T,: fz) = |Als-2(sgna)e f(2'),

@)
z2g = kz’,
where %k is a member of the block-diagonal subgroup K
of (I.8). Our task is to find all values of s and € which
admit a positive-definite invariant Hermitian form—i.e.,
a scalar product. We approach this systematically by
deriving all possible bilinear functionals on the sub-
space HQ C H, of functions of compact support: the ex-
tension to H, itself then follows as in Ref. 7, Chap.III,
Sec.4.4.

A. Invariant bilinear functionals

Suppose then that we have a bilinear form B(f,g) which
is invariant under all g € §. As we pointed out in II, it
is convenient to choose a set {g;} of elements of § and
examine the invariance under each g; separately; such a
set was given in II, Sec. 2, and we shall make use of it
here. We shall suppose that f transforms under the
representation {s;¢;) and g under (s,€,).

Consider first the requirement of invariance under the
translation group Z. Gel'fand's results7 tell us at once
that this implies that

B(f:g) = [Boyw]’ (2)
where
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wlz) = [flz))glz +2)dpe’) = f * gz)

and B is some generalized function on HO. Now exa-
mine the dilatation operator. We find

T,: f(z) = 1d| 2V *f(zd )

so that
B(f,g) = 14| 3?4722 B[f(d?z), g(d22))
and
[Boyw(z)] =d 2% [B()’w(dz)]: (3)

That is, B, is a homogeneous generalized function in z
of degree — (s, + s,) — 4. We now look at an arbitrary
element a € SL (2,02) C @ and find

[Bo,w(z)] = [Bo:w(z’)]; (4)

and therefore B, is constructed entirely out of quantities
which are invariant under SL(2,C). Since only one such
exists, we know that B is a homogeneous generalized
function of (@a + bc) [i.e.,x,x#] of degree —%(s1 +5,)—2.
Its parity is not yet determined.

Finally we consider the element J € § of (II. 3), in order
to find the remaining restrictions upon B,,. It is easy to
show that the transformations under J are

a’'=—an’1
b’ =—cAly A=—aa—bc (5)
¢’ =—bAl

so that

[la, —ayl2 + (b, —by)le, —c,y)) = 1atazt. (6)

There are two possibilities we must consider, according
to whether or not 3(s, + s,) is a nonnegative integer;

let us start with the nonsingular case, when it is not.
Then the homogeneous generalised function B, is defined
uniquely® up to parity:

ff(zl)“al _ a2| 2, (bl _ bz)(cl _ cz)]‘[(sl+52)/2]‘2
X (sgn[ ])ug(zz)du(zl)dU(Zz)- (7)

This is already invariant under the similitude group.
Examining the behavior under J € § with the aid of (5)
and (6), we find that it is conformal-invariant too, pro-
vided

S, =8, € =V=¢,, (8)
We are left with the singular case to consider, when

(s1 + 32) is an even integer. There are then three
linearly independent generalized functions associated
with the quadratic form (ga + bc) "2 (see, for instance,
Ref. 8, Chap. III, Sec. 2. 2), and we must examine them all
for invariance. The calculations are tedious and largely
routine, paralleling Gel'fand's treatment? of SL(2,R),
and we do not give them here but instead just state the
results., We find that invariant functionals exist when

s, +8, =0, €) =€,y
and when 9)
51—, =0, €, =¢,.

In the first case just one functional exists (unless both
s vanish), and can be written
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B(f,8) = [f(2)g(z)du(z).

In the second, which includes the special case of s; = 0 =
S,,all three functionals are invariant if the parity of s

is €; of these, one is concentrated on the entire eight-
dimensional space {z,, z,}, one upon the surface

lay —ayl2 + (by —by)lc; —cy) =0,and one at z; = z,.
We shall not need the former two; the last is given by

(10)

B(f,8) = [ f2)@,3; +2,0,)5¢(z)du(z). (11)
If the parity of s differs from e, only this one functional
is invariant.® To summarize: If s, = s, is not an integer,
there exists the unique bilinear form (7), usually to be
understood in the sense of its regularization;if s, =

— s, # 0,there is the form (10); and if s, = s, is an
integer, there are three linearly independent bilinear
forms of which the simplest is (11). If s; =+ s,,n0

such forms can exist.

B. Unitary representations

We now ask that the representation (1) be unitary; that
is, we must find all positive-definite Hermitian func-
tionals on H,. We have just found all bilinear function-
als, and hence we know all Hermitian ones, which are
obtained by setting s, = s;, €; = €,. Let us start with
the first case of (9). This tells us that if

s =1ip

where p is real, then just one invariant Hermitian func-
tional exists, and is given by

(f,g) =B(f,g) = [ fR)gk)dp ). (12)

This is manifestly positive-definite, and it therefore
defines a scalar product. This makes (1) a unitary
representation, which is also irreducible since no fur-
ther invariant forms exist. We shall call it the second
degenerate continuous series d,f¢.

Now turn to (7). For hermiticity (9) implies that
s =0,

where o is real. Let us change our parametrization of
z from {a,b,c} to {x,} as defined in (I.15); then (7)
becomes

B(f,g) = [Fl) | &x —x')2|-o"2[sgnlx — x')2]¢

X g(x)d%d4x’, (13)
It can be shown that this is positive definite only for

€ =1 (mod 2) and ¢ in the open interval (—1, 0); under
these conditions (1) and (13) define a unitary irreducible
representation of § which we call the second degenerate
complementary series dg. We assert that o € (0, 1) de-
fines a representation which is equivalent to this.

We are left with the two possibilities when s, = s, is

an integer: €; =€, =$ (mod 2) and €, =€z =8 +1
(mod 2). Consider first the former. We know that there
are just three invariant Hermitian functionals, and hence
at most three irreducible components of this represen-
tation. To determine the irreducible subspace of H, in
this case (it is no longer sufficient to work with H?) we
must introduce the complexification Z, of the manifold
Z, as we did in II with the larger manifold ¥. We can
then make use of the results of II, Sec. 3A, to find three
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invariant domains of Z,: the forward, backward, and
spacelike tube domains T+, T, and T°. Therefore, we
can decompose H, into the sum of three subspaces H}
and H?, of functions which are boundary values of others
analytic in T* or T~ and of functions which are not. When
€ = s (mod 2) the transformations 7, are analytic in

the variables z, (see Paper II, Sec. 2)and hence this
decomposition is invariant under all of G; if the parity
relation is not satisfied, then neither is the decomposi-
tion invariant and (11) is then not of definite sign.

We therefore obtain three second degenerate discrete
series d§. With the variables x, of (I.15) we have

Tjr:fl) = 8421 (x),
(f,8)= [F&)[a, a4 k() d4x.

The irreducible subspaces are defined above as boun-
dary value spaces.

(14)

C. Reduction under P

We now turn to the reducibility of these representations
under the Poincaré group. First notice that they are all
degenerate representations: They are defined over the
manifold of space-time points alone, with no provision
for spin. For timelike momenta, such representations
are usually regarded as the spin-zero representations
of the principal series;but for spacelike momenta they
are often overlooked, as the little-group representation
to which they correspond is the ¢{rivial representation of
SU(1,1) ~ 0(2,1). In the context of degenerate (i.e.,
nonprincipal series) representations of the Poincaré
group, however, they must be remembered.

We start with the continuous series d,#¢ and the com-
plementary dg. Since there are no analyticity con-
straints upon H, in these two cases, we find that all
momenta (timelike and spacelike) occur. For the dis-
crete series d£, however, the situation is more interest-
ing. The analyticity criteria of Sec. 2.2 show that there
are two timelike series (which we shall call d4*) which
contain timelike positive and negative mass momenta,
respectively, and one spacelike series d40. We have in
fact met d4* before: They are exactly the principal dis-
crete series dj in the special casep =0=gq (that is,
m = 0,L =K + 2);it is not difficult to show that the
scalar product in that case degenerates into ours. The
spacelike series d£0 too is not entirely new: It occur-
red in II but was discarded when we redefined the car-
rier spaces 9 modulo the space § of polynomials in
w,®@ (II, Secs. 3A and 4B). Notice incidentally that (14)
is positive-definite on H? but negative-definite upon

H: if k is odd.

Finally, we can summarize our results in the following
theorem:

Theorem 5: When restricted to P, each representation
d,Pe or dg of the second degenerate continuous or com-
plementary series of § contains a direct integral over
all (timelike and spacelike momenta) spinless represen-
tations of P. The representations d4* and d& of the
positive or negative discrete series contain all timelike
momenta with positive or negative masses respectively,
whereas d£0 contains only all spacelike momenta. Each
representation occurs with unit multiplicity.

HI. FIRST DEGENERATE SERIES

The degenerate first series are defined on the space H,
introduced in 1, section 3.2, of C~ functions over the
manifold Z of (I.9):



641 N. W. Macfadyen: Conformal group in a Poincaré basis. 111

1 g |
I
Z23¢= | i , (15)
—ai 1
et _}.__
[ ] g 11
€ +€ +af +ap = 0. (16)

We shall sometimes satisfy this condition upon € by
writing € = ¢ — ap, where ¢ is pure imaginary. The
transformation law is

T,: f§) = AfAEFE)
= |}<1 k 2B/€f—3f(c,)a
tg = X&' fef.(1.13)], (1m

and we shall proceed as in the last section to find all
admissible values of the constants A and B. To do this,
it is best to use a somewhat different set of elements of
G: we shall choose ¢ € Z, the dilation d, the operator

¢ = exp(¢pJ ), and the inversion I = exp(nd,) of (II. 2),
and the unimodular subgroup R corresponding to the
matrix &, of (I.22):

» V11792 T 71975 = 1

1 (18)

It is simple to show that these are a sufficient set of
elements of G.

A. Invariant bilinear functionals-general case

Consider first the restraints imposed upon a bilinear
functional B(f, g) by invariance under ¢, assuming that
f transforms under the representation (AlB )and g
under (4,B,). We find as before that such invariance
implies that B is some generalized function acting upon
the (generalized) convolution of f and g:

B(f,g) = [B()’w]y
w®) = [FE&NgEE ) dulc’).

Notice that Z is not an Abelian group; hence this con-
volution cannot be written additively. The measure is
given by (1.12):

du(t) = DaDBdc. (20)

(19)

Invariance under ¢ = exp(¢pdJ 3) is trivial; and examining
d after the manner of the last section, we find that, for
fixed 8, B o is homogeneous in |a| and ¢ together of
degree —3(A, + A, + B, + B,). Turning to the group
R, we obtain

a—-a' '=ary, +ifry;, ¢’ =c,

1
=1, (21)

BB =Bry, tiar,,,

so that B, must be unchanged by all such transforma-
tions. It therefore depends only upon the invariants of
this group: that is,upon ¢ itself and the combination
—2Ree = af + of. We can summarize our results by
stating

B, is a homogeneous function of | €| of degree
—3(A; +A, +B; +B,).
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There are as before two alternatives to consider, accord-
ing to whether or not s = 3(A4; + A, + B, +B,)isa
positive integer; we start with the nonsingular alterna-
tive, when it is not. Then B, is arbitrary only up to a
dependence upon the phase of €: We have

By w] = J lels®(arge)w(¢)du(), (22)

where & is some (generalized) function to be determined.
Invariance under I € a leads us to

B(fyg) =B(T1fy Tjg)

= [flaipie)pp ™"

1‘31325;'[2I_S‘I’[arg(élﬁzylz)]
x B2 Lz (@yBhes)| 8,1 Cdu(,)1 8,1 Sduley),
where we have set

a’:—e/B, B’=_1/Br e':a/ﬁ,
and
€10 = €li) =6 — g + B0y —ay) + 7 (B, —By)-
(23)
The notation zA*8 = z4z 5 was introduced in II. For this
equation to be satisfied, we must have
A, +B; =A, + B,
@(arge’lz + arng _ argﬁl)ei(Al-fsl)argﬂlei(.Az—ls*z)argﬁ2
= &(arge],)

which tells us that A, + A,

d(p)=e

=Bl +BZ and

i(A-B))® (24)

Therefore, unless s is a positive integer, there exists an

invariant bilinear functional only if
A1=0+%m—%=32, 25)
B, =0—3m —3 =A4,,

where m is an integer and o is arbitrary complex. (The
factors of 3 are inserted for convenience.) In this case
it is given by

B(f,8) = [f(t) eqpl-m20"3¢m, g(8,) du(t,) du(€,)

(generally to be understood in the sense of its regu-
larization), It is unique. If ¢ is real, we can therefore
obtain a Hermitian functional

(f,8)= [F»gl)lel-m20-3emau(c). (26)

We show in Appendix A that if m is even and ¢ lies in
the open interval (—3, 0), this is positive-definite and
hence defines a scalar product; the resulting unitary
irreducible representation of § we shall call the first
degenerate complementary series d7*°. In Appendix B
we show that the representation w1th parameters (n,
— ¢) is equivalent.

B. Invariant bilinear functionals-singular case

We now turn to the singular alternative, in which s =
(A +A, + B, +B ) is a positive integer. We have
not been able to treat this case systematically because
of the complexity of the non-Abelian manifold Z, which
makes it difficult to determine invariant regularizations
of the integral (26) and even more difficult to investi-
gate their positivity. There are, however, two series of
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representations that we already know to exist,a con-

tinuous series and a discrete, and we shall investigate
these individually. We start with the first degenerate
continuous series d*®, specified by 24 = 2ip —m — 3,
2B = 2ip +m — 3:

Ty: (€)= | Ay Ime2e-3gmp(C). (217)

This has the manifestly invariant, positive~definite
inner product

(f,8) = [ g®)ap(). (28)

C. Discrete series of representation
Consider the representation d¢4 of § by

TA%: f(€) = AP FE'), (29)
where A and B are nonnegative integers. This is redu-
cible: in particular, it contains an (irreducible) finite-
dimensional representation over a space M of multi-
nomials of total degree in (a, 8, €) of A or less and
{(a,B,€) of B or less. [This can easily be verified by
using the standard set of elements of §.] The dimen-
sionality d of this representation is

36d+1)=@A+1)A +2)A +3)B +1)B +2)B +3)
(30)

(we have given the trivial representation dimension
zero). According to a theorem0 of Harish-Chandra,
then, there are a pair of unitary irreducible represen-
tations contained in (29) as well. We have not been able
to find a particularly convenient inner product with these
parameter values, however, and shall therefore study

the equivalent representation of § in which A and B are
negative integers. That there is indeed a true equiva-
lence is shown in Appendix B.

First then consider the reducibility of the representa-
tion 7-4 8, As in the last section, we must complexify
the manifold Z; this is arranged in direct analogy with
(II. 4), by replacing {~ @) and (— 8) in the matrix ¢ of
(15) by y and 6. The complexified matrix {  then trans-
forms with the complexified ¥ [cf. (IL. 6), (IL. 8)]:

Tg—A—B :f(gc) = /QiA/Qﬁf(c:;)y

(31)

£.8 = X805
we have replaced &, by 41 [for the notation see (I.9)],
which on the “real boundary” is no change at all. Then
because A and B are integers, we find that the trans-
formations preserve analyticity in the set of variables
{a,B,v,5,€}: The argument exactly parallels that of II,
Sec.3. We find four invariant domains in this five-
dimensional complex space, entirely analogously to
(. 18):

c+e+ag+af20
€ +e—56 +§)——5(07+y)—8y—l_‘3;’20;

1l

4
Uy

of these four domains, however, only those two for which
Q,u,; > 0 possess boundary values onto y = — a,d =—8,
and so we anticipate twofold reducibility. Unlike the
situation in II, however, we have no “independent” vari-
able in which to have analyticity [2, > 0 cannot be a
domain of holomorphy in all three variables «, 3, and €]
and so are forced into more involved considerations.

We assert then that the space H, is the union of two
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(intersecting) spaces H} and H; which are defined as
follows: H; contains all those éunctions fla,B8,¢) € H,
which by some orientation-preservingl! change of
variables £ — €’({) can be expressed as f'(@’,8',c*)
where f' is analytic in ¢’ in Rec’ > 0. H; is defined to
have analyticity in Rec’ < 0, Since the transformations
(31) preserve analyticity in {@,8,,6,€}—and hence in
¢ = € — By —it is almost obvious that these spaces are
invariant; we omit a detailed proof since an indirect
proof of the reducibility of this representation will be
given shortly by displaying two scalar products. As a
simple example of a function with the desired proper-
ties we cite

H 3 f = (e — By — 1) Mexp(e — By + ay +5)
= (c — 1)y Yexplc — [a|2 —|B]2)
on the boundary.

The space H; is found by reversing the sign of ¢. The
intersection of H} and H; is a finite-dimensional space
(which for certain parameter values is empty); let us
introduce the notations

E=H:NH;,, F*=H//E, F =H;/E. (32)
Upon F*,F-, and E the representation (31) then acts
irreducibly.

We now consider the scalar product. By the results of
Sec.3A there is a unique invariant Hermitian form for
the space H;4 4, given by

(f,8)g = J F&) efz7e8:38(8,)du(€,)du(C,). (33)

The integral converges in a classical sense for (4 +B)

> 3 (the asymptotics of H, are satisfactory) and in the
case of equality we replace this by the scalar product

for the continuous series (28). Since we show in Appen-
dix B that the representations (4,B) and (—B — 3,

—A — 3) are equivalent, we have covered all possibilities.
In what follows we shall ignore the trivial case A + B =
3.

Now if A and B > 3 the integral is degenerate upon a
subspace D C H, of functions whose generalized mo-
ments vanish; if A or B < 3, more complicated argu-
ments are needed, and the degeneracy subspace is H,
itself. The factor space H, /D is finite-dimensional, and
isomorphic to E; D itself is just the direct sum of F*
and F-, That E is empty for A or B < 3 implies the non-
existence of a finite-dimensional representation of §
for these parameter values, which correspond to A or

B of (29) (but not both) being negative.

Therefore the Hermitian form (33) vanishes identically
upon the spaces of interest, and we must seek another.
It is natural to try replacing the homogeneous function
of €,, in the integrand by an associated homogeneous
function (see for example Gel'fand,? Chap. VII, Sec. 5. 3):
we consider the form

(f,8) = [F&)) e453€853 In(e, )8 (€ ,) ap(€,)dp(,).

It is simple to show that this is invariant upon D (out
not upon Hc itself unless A + B < 6) and nondegenerate
there. We can indeed now introduce two independent
Hermitian forms which are separately invariant on D;
to do so, we write (33) as

(f,g) = [ F*g®)eA3(— af —ap — €)? 3 InedeDaDB

where the ¢ integration is along the contour Ree =
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— Reap and we run the logarithmic cut along the imagi-
nary axis. Suppose g € F*;then if Re(aB) < 0 we can
close the contour of € integration to the right and the
integral vanishes. Similarly for g € F~ we can close it
to the left if Re(@B) > 0. We can therefore define the
two conditionally invariant!2 Hermitian forms

(F18)s = [ gagn o/ * 8K €A3EE 3 medn(X);  (34)

then (f,g), vanishes upon F~ but is nonzero upon F*,
while (f,g). is nondegenerate upon upon F-. If f € F*
and g € F~ (or vice versa), the form vanishes. Notice
that while both these functionals can be extended to the
entire space H,, they are not invariant there.

Since both these forms are Hermitian, we have only to
show positivity in order to constitute them as scalar
products for the series d7#"% and complete the proof of
the unitarity of the representations. We have not suc-
ceeded in finding a direct proof of this; however, we have
shown that the scalar product (if it exists) is (34), unique
up to multiplicative factors, and since Harish-Chandra's
theorem assures us of the existence of a UIR (and hence
of a scalar product), positivity of the normalized inte-
gral follows.13 A direct proof would of course be more
satisfactory.

Let us summarize our results on the series d4-% which
is equivalent to d{#-3-4"3, When A and B are nonnega-
tive, we are assured of umtarlty by Harish-Chandra's
theorem; and when A + B = — 3, we can use the scalar
product (28) of the continuous series, which is manifestly
positive-definite. For other parameter values we cannot
at present prove unitarity.

D. Reduction under P

We now consider the reduction under the Poincaré group
of these representations over the manifold Z. For the
second degenerate series it was immediately clear what
was the situation, but here it is less so and we must
examine the Casimir operators of P.

First we consider the momentum dependence—that is, the
way the functions f € H, transform under translations
z,. Consider for fixed 8 a translation in the direction

that is, a transformation by a matrix z, given by

(XO,X) =

(a,b,c) = (*béybrbﬁﬁ)'
For all the first degenerate series we obtain hence
Tzo:f(ayﬁyc) = f(a’B:C)

so that the function is unaltered by this displacement—
in other words, the momentum must be orthogonal to this
direction. But this is parallel to a lightlike vector;no
timelike vector can be orthogonal to this, and hence the
momentum is purely spacelike for all representations on
the spaces H,. We can obtain this result another way by
remarking that the basis functions D%,,(¢) of Appendix A
are actually eigenfunctions of momentum; and a short
calculation shows that p p¥ = — |A’[2,

We turn now to the spin content. To investigate this, we
evaluate the fourth-order Casimir operator w2 of P in
terms of the generators of the group expressed as differ-
ential operatorsl4 on H,. w is given by

w =——%

u upoJ"PPO
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and after a tedious but straightforward calculation we
obtain the remarkable result

w, Wk = k(k + 1)P#P#,
where we have assumed that the representation is speci-
fied by (29) (where A and B are not necessarily integers),
and set

k=1+3%(4 +B). (35)
In other words, the representation 748 contains only the
single spin s = % (the missing minus signs are caused by
the anti-Hermitian nature of our generators)., Inserting
the values of A and B appropriate tothe series concerned
we find that the continuous series (27) has spin s= — ++
ip and the complementary series (25) has spin s =0 — §;
the parity of the representations of the little groups is
that of m. The first of these is on the principal continu-
ous series of SU(1,1) or O(2, 1) and the second on the
complementary series, and confirm our result that the
momenta concerned are all spacelike.

There remains the discrete series (29), or more strictly
the two separate parts of the series specified by A + B =
—3 and A,B = 0. On the first part we find that the spin
lies on the discrete series!5 of SU(1,1), s = — 3; on the
second, that it lies on the discrete series but at a value
of s = 1 or above. The problem is now to decide which
discrete series —&* or £~ — and to investigate the effects
of the reducibility of d4-%,

First consider the former problem. Recall that for the
principal series of G the parameter $m = 5 (B — A)
plays the role of an “allowed helicity”; a brief calculation
now shows, however, that for A and B of the same sign
the helicity $m is incompatible with both the series &*
and & of SU(1,1). This paradox is resolved quite simply
by observing that the actual helicity is given by a more
complicated operator (if p; = 0 = p, it is just tm —

i0 /20, where § = arg); the derivatives in this have a
spectrum with an excluded center portion because of

the requirement that (33) vanish on the space D, and
because of this the helicity does indeed always lie in an
allowed range. We find in fact that both the series &*

and k2~ occur in the reduction under the Poincaré group.16

Finally, we turn to the significance of the reducibility of
the representation d45, This is linked to the invariance
of the analyticity in ¢ in some reference frame, and we
know that analyticity in Rec > 0 implies that (p, +p3) >
0. Since this is itself not a Lorentz-invariant restric-
tion for spacelike momenta, we need concern ourselves
with it no further since it cannot restrict the represen-
tations of P which occur. We can now summarize our
results:

Theorvem 6: When restricted to P, each representation of
the first degenerate series of § contains all spacelike
momenta. The first degenerate continuous series dyP
contains the spins = — 3 +ip only, the complementary
series d7 °only the spin s =0 — 3. In either case the
parity of the representation of the little group is that

of m. The representations d7*** of the positive or nega-
tive discrete series contain the spin & only.

IV. COMMENTS AND COMPARISONS

In this section we summarize our results on the degene-
rate series and compare them with those of other work-
ers. To relate our representations unambiguously to
those of others we make use of the expressions (I. 38)

for the Casimir operators; with the representation (II. 12),
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T,: f(y) = | Al E-1(sgnA)e | x|m-K+L-2)-mf(y’)  (36)
these are
C,=5—3m2 — (K2 + L2),
Cy = im (K2 — L2), 37

Cy,=35m2(K2 + L2 —2) —3(K2 + L2) + L(K2—-L2)2+1
and the fourth-order operator is related to that of Yao3
by (I.39). In the table at the end of this section we list
the representations, their scalar products,and the allow-
ed values of the parameters K, L, and m, together with
the representations in Yao's list3 to which they corres-
pond and their reduction products under the Poincaré
group. The Casimir operators can all be found by
straightforward substitution in (37), and we do not give
them explicitly.

We start by discussing the second degenerate series.
The complementary series dg has been given by Yao
alone, but the continuous serxes dy by several auth-
ors,3 1718 although the presence of the parameter €
(Wthh does not appear in representations of the Lie
algebra) has been overlooked. Castelll7 has shown how
this reduces under P; Limié et al.17 have realized the
representation on spaces of functions over the hyper-
boloids O(4, 2)/0(4, 1) and O(4, 2)/0(3, 2) and the cone
0(4,2)/0(3,1) x T4: these are, of course, all unitarily
equivalent by virtue of the Gel'fand-Graev transform.
All these results are in agreement with ours.

The discrete series have also been investigated. Ragzka
and Fischer19 consider U(2, 2); hence their representa-
tion is actually d£* where # is an integer of the same
parity as k& [corresponding to our parameter € =

k(mod 2)}, and is irreducible by virtue of the extra gene-
rator that that group has; the threefold reducibility is
given in Refs. 18 and 20, where the authors treat the
orthogonal group SO(4, 2). Yao's conclusion3 that all
these series are spacelike disagrees with ours; he also
regards k = 0 as a separate class of representation (his
class X) and implies that it is irreducible, Castelll?
has examined the special case 2 = 0 = € and its reduc-
tion under P, and his results agree with our own; the
alternative situation 2 = 0,¢ = 1 belongs to the continu-
ous series d‘; and is irreducible.

We now turn to the degenerate first series, and as far

as we are aware the only treatment of these is that of
Yao.3 For the continuous series d¢ (his “principal
series,” case XIII) and the complementary series dapoe
his results agree with ours; so too do his results on that
part d7+ of the discrete series characterizedby A +B =
-3 (hlS cases V, VI); although we obtain a UIR for all
integer values of m whereas he requires it to be odd.

For the other part of the discrete series d4.7 (his “dis-
crete series D+,” cases III, IV) our results differ. Yao
has obtained these series by citing the theorem10 by
Harish-Chandra that we employed in Sec. 3C, which to be
applicable requires the existence of a finite-dimensional
representation of SU(2,2). Now we have shown explicitly
that such a finite-dimensional representation exists
when A and B are both either positive integers or nega-
tive and less than — 3, while by substituting into (37) his
values for the Casimir operators of these series we find
that Yao's representations have one of the parameters
A, B positive and the other negative. We have not been
able to convince ourselves that a finite-dimensional
representation does indeed exist with such parameter
values, and so the Casimir operators that we give for
this series do not agree with those of Yao. He finds
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like us that his series are spin-irreducible, but states
that they are purely timelike. Since our series are

defined over the manifold Z, they are purely spacelike;
the spin then belongs to the discrete series of SU(1, 1).

It is interesting to note that the degenerate first series
we have given here contain between them every spacelike
spinl3 except for £ = 0 and B = 5. Whether or not the
discrete series d{2 and d7* are in fact separated by
these points requires an investigation of the positivity

of the scalar product (34) in the range where the integral
converges but is not guaranteed positive by the Harish-
Chandra theorem.

Finally, we notice that the exceptional or ladder series
of representations4-5 are not present above. This is
because they are not defined over either of the manifolds
Z or Z;indeed they are not given by any formula of the
type (36) To see this, we remark that the Casimir
operators of that series are3

C2: _%(kz —4)’ C3: %lk(kz _4)1

k  an integer;

Cy= sk2(k2—4),
(38)
there are many sets of values of K, L, and m which
satisfy these relations, but none of them in addition can

yield the dilation operator whose generator has been
given by Castell4 or Mack and Todorov.5

Table of results

danpe K=1 L=2p m
(f,8) = [F€)g€)du(t)
Yao case XIII, “principal series”
Spacelike, Spin s = — % + ip
dpo K=1 L=2 meven o€ (—%0)or
0,3
(f,8) = ff(‘:lj I €312 |-m-20-3€1m2g(§2)
X dp(€, )dp(C,)
Yao case XIV,“complementary series”
Spacelike. Spin s =0 — 3
a4+ K=1 L=3+A+B m=A—-B
A,B=20
Spacelike. Spin s =1 + 3(A + B)
dyA-8+ K=1 L=3—A—-B m=A—B
A,B =23
(f,8) = [F*g)eA3e8-3medu(t)
Spacelike. Spin s = — 2 + 3(A4 + B)
Yao cases I, 1V, “discrete series D*”,
But see above.
drps K=1 L=0 m
(f,8) = [F®)g®)ap()
Spacelike. Spin s == — 3 only.
Yao cases V, VI “most degenerate discrete
series”,
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ai K=ip—1 L=ip+1 m=0
pe(—w0)or(0,x) €=0
pE(—w0]or [0,0) e€=1

(f,8) = [ fR)gl)du(z)

All momenta (time- and spacelike). Spinless.

Yao case I, “most degenerate principal
continuous series.”

dg _K:o—l L=c+1 m=0 €=1
g€ (—1,0)or (0,1)
(f,8) = [F&)| ¢ —x')2[">2 sgn(x — x')2

x gl )d4xd4x’

All momenta (time- and spacelike). Spinless.

Yao case II, “most degenerate complemen-
tary continuous series.”

K=%F—~1 L=kr+1
€ = k(mod 2)
(f,8) = [ fl) Drgle)dx

d¥* has timelike momenta;

dE+,dgo m=0

d;‘f’ has spacelike momenta. All spinless.
Yao cases VII-IX, “most degenerate dis-
crete series.”

When 2 = 0 Yao case X, “most degenerate
discrete representation.”

APPENDIX A: POSITIVITY OF SCALAR PRODUCT IN
dlmo

We wish to find the conditions under which"

I= [ @B — )2 32 (aB + c) ™" 32

X f(€8,)du©)ap€,) (A1)
is of definite sign. To do so, we notice that this is an
integral operator acting upon the generalized convolu-
tion f * f({), and so it is natural to pass to the Fourier
transform over Z.

We first remark that Z is a five-parameter non-Abelian
group with only one Casimir operator, corresponding to
the element ¢. Choosing a Fourier integral pseudobasis
for the space of functions of @ on which the representa-
tions of the principal series are defined, we find that the
representation functions (matrix elements) of an arbi-
trary group element are

DL AK) = eP TR ED52(47 — A + 2ipB); (a2)
here the real number p labels the UIR, and the complex
A, A’ the basis. If we define

fPaL,A)= [FODE,,(€)du), (A3)

then we find the analog of the Plancherel theorem

J 7@ g®)auE) =73 [ 72(A’, A)g»(A’, A) DADA"p2dp a)

All these results are easily verified by straightforward
classical Fourier transforms;the details of the group
theory are irrelevant. We can now approach the problem
of positivity. It is easy to verify that if ¢ < 0, the asymp-~
totic behavior of f € H, implies that f is u-measurable;
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hence the Fourier transform (A3) exists. By the repre-
sentation property of the D functions and the Plancherel
theorem then we find
1=1"3 [ p2dpDADA' 9 P(A,A’) [ fP(A,A") FP(A’,A")DA",
(A5)
where
Me(A,A")= F{(@B—c)m2-0-3/2(aB + cym/2-9-3/2}(p,A,A’)
= f(EB — ¢)m/2-0-3/2(qf + ¢y ™/2-0-3/2¢gpc-iRe(AR)

X Dadc52(A’ —A + 2ipB)DB. (A6)
Change to the variables w = af + ¢, w,c; then we can
perform the w integral in a distribution sense (Gel'fand,8

Appendix B, Eq. B1.7.%7) and the ¢ integral gives a
5[p — Im(4/B)]. Let us write

A =Aoei°‘, A’ :Abe‘i“;
then the final result takes the form
Ir(lm/2l —o —3)

M = 2-20-14-Imig2
r(im/2] + o +3)

[pl2e(sgnp)m

X | sinat|-29-1[sgn(sina)]me-ime

x 14,1604, — 145]). (A7)

We shall denote the constant part of this by ¢(n, ). The
integral (A5) then becomes

cn,0)m-3 [|pl2o-2(sgnp)mdp [DA".|Agld| Ayl .d(argA,)
X [ FP(Agei*,A") Fo(A geie, A")

X e-ima| gina |~29-1[sgn(sina )]"do . (A8)

Clearly we can have positivity of the scalar product
{that is, of the normalized integral) only if m is even.
The p integral certainly converges for — $ < 0 < 0 and
we shall show that in this interval the integrand is
positive.

Consider then the o integral in (A8), with m an even
integer. Let us set

FP(A,A") =fp(|Al,0 = argA,A") = F(a)
and concentrate upon the dependence on ¢ for fixed

p,A”,and |Ay|. The integrals over o and (argA,)
become

2n ¢ S .
fo da'fo Fa’' + o) Fla’ —a)eima(sing)-20-1da,

This is of the form of an integral operator acting on the
convolution over the unit circle of F and F. Define

- 2
FN= ~f0 ﬂF((p)eiN‘Pd(p;

then after a little manipulation we can use the Plan-
cherel theorem to write the integral as

1 = = T ) o
pwcy %}F_NF_NIO ei?W-m/2) (sinlp)-20-1d ¢
220-111'1(__ 1)N—m/2r(_ 20) -
=2 1 y : |7
N T(z—o+3m —N)I'(z7—0—3m +N)
(A9)

(we have used HTF 2.4.8).21 Consider the constant
factors here;if N = m /2, we can write them as
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220711(—20) (3 +0)E +0) - (N—4m — % +0)
2 .
z

Mz -0 G—0)d—0)  W—1im—%—0)
The denominator is always positive for ¢ < 0, and the
numerator is positive too if (0 + 1) > 0. Similar con-
siderations apply if N < m/2. By combining (A8) and
(A8) we have therefore proved that the scalar product
(A1) is positive definite if m is even and ¢ € (~ %, 0).
For ¢ outside this range the integrals must be under-
stood in the sense of their regularizations, and will not
in general be positive.

APPENDIX B: EQUIVALENCE OF REPRESENTATIONS
OF d,

We asserted in section 3.3 that the representations

(A,B) and (— B — 3,—~ A — 3) of the first degenerate

series were equivalent. To show this, we display an

intertwining operator between them, which we shall

denote V. Such an operator V:H,(—B —3,~A —3)—

H (A, B) is given in general by

Vif©) = [ &) e 8B Adu(,); (B1)
it is trivial to verify that

TgA.B[Vf] _— V[TgB 3,-4 3f} (Bz)
by using the standard set of operators, and we need not
show it here. This displays the equivalence of the rep-
resentations (n,p) and (m,— p) of the first continuous
series, and also of {n,o) and {m,— o) of the comple-
mentary. In both these cases the integrals converge in
a classical sense.

If A and B are positive integers the situation is more
complicated. It is clear that the factor space H, /D of
functions whose generalized moments do not vanish
[see Eq. (33)if.] is mapped onto the multinomial sub-
space M C H (A,B), while the subspaces F* and

F-C H{—B>-3,—A—3) are annihilated. We introduce
for them the operators

V€)= [ F£ ) [e@ DB A Inle ;-] du(C,); (B3)

on these spaces (but not on H, itself) this is an inter-
twining operator in the sense (B2), and it is simple to
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check that it both preserves the analytic structure in
¢ and is continuous, The set of equivalences is there-
fore proved.
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Over a region of finite width in which the potential varies with respect to a single Cartesian
coordinate, it is possible to transform the one-dimensional Schrodinger equation into Hill’s equation.
It is thus possible to express the connection of the wavefunction and its normal derivative across the
region exactly, in terms of the Fourier expansion coefficients of the potential profile. As a
consequence, the reflection and transmission amplitudes and the bound-state energies associated with
such a region may be directly calculated without actually solving an equation in the interior of the
region. These results are applied to the solution of several examples, including the problem of

s-wave scattering by a central potential.

{. INTRODUCTION

Exact solutions of the one-dimensional Schrédinger
equation in regions of varying potential may be obtained
in terms of known functions only when the potential
profile takes on one of a limited number of forms., The
harmonic osecillator? is perhaps the best-known
example; another is the periodic cosinusoidal potential
considered by Morse,2 who obtained solutions in terms
of Mathieu functions.

If a solution in terms of familiar functions (generally
speaking, solutions of the hypergeometric equation) can-
not be obtained, alternate approaches have been useful.
These include direct series solution of the differential
equation, yielding results which are most often useful

in the long-wavelength limit; and the WKB method,3
which is appropriate in the short-wavelength limit.

In this paper we present an approach to this problem
which is applicable when the potential variation occurs
over a region of finite width and possesses a Fourier
series expansion. The solutions obtained are formally
exact and may be applied in any wavelength regime;this
is particularly important when the scale of the inhomo-
geneity is comparable to the wavelength. The approach
is based upon the fact that an almost arbitrary periodic
potential may be dealt with by transforming the
Schrdinger equation into Hill's equation?; we simply
focus attention on a single half-period or full period of
an equivalent even-periodic potential,

In the following sections of this paper, we first trans-
form the Schrodinger equation in one dimension into the
Hill equation and present the connection of the wave-
function and its normal derivative across the region of
varying potential. This connection turns out to involve
the Fourier coefficients of the potential profile in a
relatively simple way and does not require the actual
solution of the Hill equation. As a consequence, the
wavefunction in the exterior regions may be determined
exactly without solving the differential equation in the
interior. We then illustrate the application of this for-
malism to the solution of several examples and present
numerical data for some concrete cases.

). FORMULATION OF THE PROBLEM
The one-dimensional Schrodinger equation is written

2 dz@ .
7 TnZ + [E~V@]y =0, 1)
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where (x) = Y(x) exp(— iEt/h); V(%) is presumed to
varyon 0= x < d. On 0 = x < 4, introduce the following
substitutions into (1):

E = Zd ’ (2&)

u(®) = P, (21)

A+ 2’% g, cos2nt = (%) ( ){E V).  (2)

We find that u(£) satisfies Hill's equation®

2
Fu L ae2d g, cosnE)u = 0, 3)
dE 2 n=1

We term solutions of (3) “Hill's functions.” Solutions of
Hill's equation are readily obtained when the series of
coefficients g, is absolutely convergent; this is the only
restriction placed on the function V{x), Let the basic
set of solutions be denoted u; ,(£), where

u1(0) = u5(0) = 1, (4a)
ug(0) = uj0) =0 (4b)

{primes denote differentiation with respect to the argu-
ment}; then Y(x) is given on 0 < x =< d by a linear com-~
bination of these functions:

96 = [ur.2(55)] ®

It is possible to solve Hill's equation and thereby obtain
Y (x) throughout the region 0 < x =< d. However, for
many problems of interest, all that is reqmred in addi-
tion to (4) is the set of values uy 2(1r/2 ) and u} »(m/2), so
that boundary conditions on zp and ;,Lf atx=0andx=d
may be imposed. These values are known and are ex-
pressible directly in terms of the coefficients A and g,.
We have$.7

uy(1/2) = cos(m/A/2)C{(N), (6a)
up(n/2) = (1/YX) sin(m/x/2)S,(n), (6b)
uy (1/2) = — JX sin(mya/2)C o), (6c)
Copyright © 1973 by the American Institute of Physics 647
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uo(n/2) = cos(nya/2)S,(n), (6d)

in which C,, C,, Sp, and S; are the infinite determinants®

C ()\)— 5 + (gn-m +gn+m)(1+sgnn sgnm)l
0 n,m ’——Enﬁm()t —4n2)
(8nm T & )
c,(\)=|l6 + n-m n+tm+1 b
1 ) n,m A — (271 + 1)2 o ( )
Sod) =]{6 + (g""m gn+m) o (70)
0 - ’
i A —4n2 1
s, =1ls.  + (8nom = &nims1) 1d)
! P A= (2m+ 12 ||,

In (7), € —.21fn>0and€0—lbnm—llfn——ma.nd
6, —Ootherw1se sgnn = 1ifn >0, and sgn 0 = 0;
g_ —g,,andgo—o

The poles of the infinite determinants which occur when
A is the square of an integer are exactly canceled by
the zeros of the trlgonometrlc functions which multiply
them. Thus uy »(7/2) and uy ,(7/2) are analytic func-
tions of A; their zeros are those of the associated deter-
minants.

The connection of the wavefunction and its normal deri-
vative across the region of varying potential may now
be expressed in terms of a connection matrix as

follows:
@ ul(%> %uz@ 20
~ = (8)
P’ (@) zld“1<‘121> uz(‘”g) $'(0)

The matrix elements depend only on the coefficients A
and g, via (6) and (7). In the symmetric case, where

V{x) = V{—x) in the region —d = x = d, the connection
is readily shown to be given by
Y(—a ayy ap,| [P@
R = R (9)
v(=d 01 Qg | | V(@)
in which
ay1 = 0y = uy (1/uy(1/2) + uy (/2uy(m/2), (10a)
019 = — (4d/Mu,(@/2uy(n/2), (10b)
gy =— (m/dyu’y(n/2)u, (w/2). (10c)

We have used the fact that #4 is an even and u; an odd
function; again, the matrix elements depend only on the
coefficients A and g, .

Ii1. APPLICATIONS

The method given in the previous section is particularly
well suited to the solution of problems that involve the
matching of wavefunctions at the boundaries of a region
without requiring knowledge of the wavefunction in the
interior of the region. Reflection and transmission at a
region of varying potential, scattering from a finite
range central potential, as well as the associated eigen-
value problems for bound states are natural examples.
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In this and the following sections, we present the formal
solutions to these problems and consider some con-
crete examples.

Reflection and transmission by V(x) on 0 < x < d

Consider the potential
x <0

e Vl
V= %V(x) 0=x=d) 11
Vo (x>d)

2m
We expand V(x) as in (2c) and define k% = (E—-V)

72 "

i =1,2. Then for x < 0, let

D) =" + ReTH1%, ' (12
and for x > d, let

Px) = Te'*2* D, (13)

R and T are respectively the reflection and transmission
amplitudes to be determined. Evaluating { and ' at

x = 0 and x = d, substituting these values into (8) and
solving for R and T yields

= %{— uy(n/2)

+ iK2u1(1r/2)

—iky fup(n/2) —ikguy(m/2)]}, (14a)
T = 2Ky 14Db)
= > (
with
D= ui(ﬂ/Z) o iKzul(ﬂ/Z) - iKl[u'z (7[/2) - iK2u2 (1[/2)],
(14¢)

in which k; = 2k;d/7,i=1,2. uy 5(1/2) and uy »(1/2)
are known thus determmng and T for an essentially
arbitrary potentlal profile. The energies of bound
states, if any exist, are obtained from the roots of the
equation D = 0,

Reflection and transmission by V(x) = V(—x)
on—d=x<d

Consider the potential

vy, (xl>a
V= (15)
ViR) =V(=x) (lxl=d
For x < —d, let
J;(x) — eikz(x+d) + Rse—ikz(x+d) (16)
and for x > d, let
Yx) =T, g2, amn

R and T are respectively the reflection and trans-
m1s51on amphtudes to be determined. Evaluating xp and
Y’ at x = + d, substituting in (9), and solving for R ; and
T, we obtain

R, =~ 5 [ui/2us(n/2) + kjuy (n/2uz(n/2),
s (183.)
r o= ke (18b)
s T Ds
with

D = [uy(@/2) —ikyuy (w/2)|[un(m/2) —ikgug(n/2)].

(18¢c)
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Note that the roots of D, which determine the bound-
state energies, separate into two groups because of the
symmetry of the potential. Bound states for which
J(— x) = Y (x) are characterized by

uy (7/2) = ikquy (1/2) (19)
and those for which §(— x) = — $'(x) by
wy(n/2) = ikguy (/2. (20)

uy o and u , are real, so roots may exist only if k3 <0.

S-Wave scattering by a central potential
Consider the central potential in spherical coordinates

Vir) (O=7r=7y
V= (21)
0 @ >ry)

The scattering of the I = 0 partial wave (the s-wave) is
treated in a manner analogous to that of reflection and
transmission at a symmetric one-dimensional potential.
It is easy to show that on 0 = » < 7, the wavefunction
for I = 0 which is regular at» = 0 is given by

o) = 27 oo

up (17/27 ), (22)

where 7, takes the place of d in the previous calcula-
tions. A is the form factor; Y (0) = A, to be deter-
mined.

In the regionr > r,, we have

nky» e
+ B

si
yor) = ; (23)

07
kor ikgr

where k3 = 2mE/n?2 and B, is the scattering amplitude
to be determined. Ensuring that y and ' are continuous
at ¥ = r, determines the values of A, and B,. We ob-
tain

2ikg7g

Ay = e *o%o [1/<u'2(17/2) - u2(1r/2)>:|, (242)

i Ll 2k,7, T
BO = ;k(ﬂoz' sin(— ko,ro)[(u’z _2 — ___Q_Q cotko,rouz_z >/
m

T 2iky7r 1r
(g ~ "0 uy T )] (24b)
2 g
The equation determining the energies of the bound
states is simply
ulz(ﬂ/Z) = (Zikoro/'ﬂ)uz (77/2). (25)

The scattering cross-section 0y is given by
(471/k3) | B, |2. In the low-energy limit ky7, — 0, we
obtain for ¢, and Ay

2
lim oy =477} [1 — M] , (26a)
kory—0 uz(‘ﬂ/Z)
lim Ay = 1/uy(n/2). (26b)
koo 0

For this limiting case, A = (8mr3/n2n2)V, , where V, is
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the average potential in the regionr =< »,. We turn now
to the consideration of some numerical examples.

IV. NUMERICAL EXAMPLES

In the examples considered in this section, the potentials
are of the form

Vix) = i[v(d) + V(0)] — % [V(d) — V(0)] cos(mx/d)
+ I cos(2mx/d)— T (27)

in which I' is a parameter. The coefficients A and g,
are given by

A= (2d/1)2@m/H2)[E—4V@ —3V(O) + T],  (289)
g1 = 1(2d/mM2@2m/E2)[V(d) — V(0)], (28b)
1.0
o8l
>
= Y=0.125
(7}
z Y =0.125
(=]
w
£
Z 0.4}
=z
L. 4
o
-
0.2 v=3.0
0.0 ! 1 2 L
0 | 2 3. a 5
E/V

FIG.1. Transmitted intensity vs E/V.

v

FIG.2. Bound-state energies in a symmetric well.
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&2 = — (T/2)(2d/m2(2m /K 2), (28¢c)

£,=0, @>2). (28d)

We shall use the abbreviations e = (2d/mM2(2mE /K 2)
and v = (2d/7)2(2mV/%2) as appropriate in what follows.
Transmission through a symmetric barrier

The relative transmitted intensity 7, of a beam inci-
dent from x < — 4 on a region of symmetrically varying
potential (—d =< x = d) is obtained from Eq. (18b):

7= 1Ts12 =63/{lui (0/2)% + kBuy (1/2)2][ux(7/2)2
+ k3un(n/2)2]})  (29)

We assume V(0) = V, = Vand V(x d) = V, = 0. Curves
of 7, as a function of E/V are given in Fig. 1 for
v=3.0andy=TI/V=—0.125,0.0, and 0.125. The
three cases correspond respectively to (1) a barrier of

3.0

KS, =0

Y = 0.12%

LoG (o /am2)

FIG.3. Scattering cross-section v8.v;k,7, = 0.

LOG o (0, /amE)

Koto

FIG.4. Scattering cross-section vs.ky7 o v = 30,y = 0.125,
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height » = 3, 0 with V" (0) = 0; (2) a barrier of height
v = 3.0 of cosinusoidal shape; and (3) a barrier of
height v = 3.0 with V" (z d) = 0.

Bound states in a symmetric potential well

Let the parameters of a symmefric potential well ex-
tending over |x| = d be chosen so that V(+ d) = V' and
V(0) = 0. The bound-state energies are obtained from
(19). We have calculated Je as a function of v for
y=E/V=0.125,4 = 0,and y = — 0. 125. The results
are shown in Fig. 2, The case ¥ = 0. 125 represents a
well for which V" (0) = 0; while for v = 0.125, V" (x d)

= 0, It will be noted that the bound-state energies in-
crease as y is decreased. This is a consequence of the
increase of average potential in the well with decreas-

ing y.

Scattering from a central potential

Consider a central potential for which V(0) = — V and
Virg) = 0. The scattering cross-section in the limit
ko7 — 0 is given in (26a). Curves of the normalized
cross-section o,/4773 in this limit are shown in Fig.3
as functions of v for y = 0,125,y = 0, and y = ~ 0. 125,
The resonance peaks corresponding to the onset of new
virtual energy levels are evident; their shift to larger
values of V as y is decreased is due to the increase in
average potential in the region, Also apparent are the
nulls associated with the passage of the phase shift §,
through 180°.

The normalized scattering cross-section 0,/4773 is
shown as a function of k7 for v = 30 and y = 0.125 in
Fig. 4. This set of parameters approximates a Woods—
Saxon potential of depth 60 MeV and radius 5 {.

V. SUMMARY

We have proposed a method by which solutions of the
one~dimensional Schrédinger equation may be obtained
in terms of Hill's functions. The method is applicable
to potentials which vary over a region of finite width,
and may be applied if the series of Fourier expansion
coefficients of the potential profile is absolutely con-
vergent. If these conditions are met, Hill's equation
may be solved throughout the region of varying poten-
tial.

The determination of the wavefunction in the exterior.
region can be carried out without solving the Hill equa-
tion. This is possible by virtue of the fact that the
values of the Hill functions and their derivatives at the
boundaries are expressible direectly in terms of the
Fourier coefficients of the potential profile. Thus re-
flection and transmission coefficients and bound-state
energies are easily calculated for any profile which
possesses a Fourier cosine expansion.

*The research reported in this paper was supported in part by the NSF
under Grant No. GK-31315.
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The Einstein-Maxwell field equations in the presence of one Killing vector are shown to possess
covariance under an eight-parameter group of linear substitutions in the field variables. This internal
symmetry group is isomorphic to SU(2,1). Three of the degrees of freedom correspond to gage
transformations, but the remaining ones allow us to generate a five-parameter family of solutions

given a single solution.

1. INTRODUCTION

The Einstein—Maxwell equations which describe the
coupling of the electromagnetic field with gravity have
so far proven too complicated to yield solutions except
in a few special cases. However, as several authors
have pointed out, they possess a large amount of hidden
symmetry. Given one solution, one may use certain
transformations to generate other solutions {often more
complicated ones). Ehlers! was the first to discover
such a method. He gave a discrete transformation
which mapped static vacuum solutions into stationary
ones. Harrison? considered a subclass of stationary
electromagnetic solutions, namely those for which the
various gravitational and electromagnetic potentials
were all functionally dependent. He gave several cases
of continuous transformations connecting such solutions.
Matzner and Misner3 and also Ernst45 studied the
problem of stationary vacuum fields with axial symme-
try. They produced field equations and effective Lag-
rangians which were manifestly covariant under rotations
in an abstract (2 + 1)-dimensional Minkowski space.
Geroch® showed that this SO(2, 1) = SU(1, 1) symmetry
was present for all stationary vacuum fields, with no
further restrictions imposed, and that it directly im-
plied the existence of Ehlers—Harrison transformations.

In this paper we will extend Geroch's results to include
electromagnetism once more. We will study the sym-
metry of the Einstein—Maxwell equations in the presence
of one timelike Killing vector. Using the formulation of
the field equations given by Israel and Wilson,7 we will
show the equations possess an enlarged symmetry group
isomorphic to SU(2, 1). Some of the group transforma-
tions merely produce gage changes, while the remaining
ones are transformations of the Ehlers—Harrison type.
Making use of them enables us to generate a five-
parameter family of stationary Einstein~Maxwell solu-
tions from any one such solution,

2. FIELD EQUATIONS

The electromagnetic field may be conveniently described
by means of the complex Maxwell tensor

F,,=E, +*F,, (2.1)
where F,, is the usual Maxwell tensor and *F , is its

dual. In a source-free region the entire set of Maxwell's
equations is

EF[ pvial < 0.

This is the integrability condition for the existence of a
complex vector potential G” such that

F,=6,, —0@

nv i wave

(2.2)

In fact @, provides a redundant description of the field,
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and one can show that knowledge of the fourth compo-
nent G, = ¥ is entirely sufficient. The real and imagi~-
nary parts of ¥ turn out to be the usual electrostatic
and magnetic scalar potentials.

If the space—time in which ¥ , resides is stationary,
there must exist a coordinate system in which all phy-
sically measurable quantities are time-independent.
In this case the line element may be written as
—f'1hjkdxjdxk,

ds2 = f(dt +wjdxi)2 k=123,

(2.3)

where f,w;, h » do not depend on £, By a suitable gage
transformatlon one may make @, time independent also.

All field equations may be written as equations in a 3-
space H with metric tensor & Let V denote the co-
variant derivative in H. We d’efme a twist vector?

T= 2V X w + i(3*VTP — ¥v¥*), (2.4)

Using a portion of the Einstein equations,
Gy = 81rT]. 4

one can prove that?
vVxT1=0,

implying the existence of a scalar “twist potential” ¥,
such that

T =V, (2.5)

In a manner analogous to the treatment above of electro-
magnetism, we define a complex scalar potential for
gravitation

& =f—o¥* + iy, (2. 6)
the “ Ernst potential” Once h s 18 given, & completely
suffices to determine the metr1c and hence the gravita-
tional field. However, note that the relation between

6 and ds? is a nonlocal one, since w and ¥ are not
locally related.

The Maxwell equations and the remaining Einstein equa-
tions may now be cast in terms of §, ¥. They yield?

V28 = (V8 + 20*VV¥)-v§, 2.7
fV2¥ = (V8 + 2¥*VT). v, (2.8)
as well as specifying the curvature tensor of H:
sz]_(kS) = Lg,(j‘g*,k) + ‘I'g,(j‘l’*, o+ ‘I’*‘g*,(j‘l’,k)
— (& + 8*)\11.(].\11*, . (2.9)

The 3-metric 2 j& MAy be any metric whatever for which
this is the curvature tensor.

Copyright © 1973 by the American Institute of Physics 651
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3. SU(2, 1} SYMMETRY

The easiest way to make the symmetry in Egs. (2. 7)-
(2. 9) manifest is to replace 8, ¥ by three complex
scalar fields u,v,w:

E=(u—w)lu+w), Y=uv/w. 3.1)

Of course, there is redundancy in a description of this
sort. In particular, we may choose w to obey any field
equation we please, in order to obtain simple ones for
u,v. Upon substituting Eq. (3.1) in Egs. (2.7), (2. 8),
we find a possible choice to be

(wu* + vv* —ww*)V2y = 2@*Vu + p*Vo —w* Vw) - Vu,
(uu* + vv* —ww*)V2p = 2u*Vu + v’V —w ¥V ) - vy,

u* + vo* —ww*)Vaw = 2W*Vu + v*Vo —w VW)V .

(3.2)
We now introduce an abstract complex 3-space M with
an indefinite metric,

Nap = diag(l, 1,— 1).
We regard the fields », v,w as components of a single
vector field

ye=(u,v,w)

which takes values in this 3~space. That is, at each
point of H the electromagnetic and gravitational fields
determine a vector which lies in M.

Due to the fact that only the ratios of u, v,w enter into
Eq. (3. 1), their normalization is not significant, and it is
actually only the rays in M we are concerned with rather
than vectors.

Equation (3. 2) may now be written compactly as

Y YBv2Ye = 2Y *VYE.Vye; (3.3)
Equation (2. 9) for the curvature of H becomes

Ry = (Y Y2V, ;Vopn ", (3.4)
where

Ve, = YB*YY'].E&W. (3.5)

Now consider what happens if we perform a constant
unitary transformation in M, That is, we make a linear
replacement

Yoo Pla=Aa Y8 (3.6)
such that
Y'Q*Y'“ — Yﬂtyq (3‘ 7)

and A%, is not 2 function of position in H. According to
Eqgs. (3.4), (3.5), R, transforms as 2 scalar in M and
hence retains a fixed value. We may assume thath
remains fixed also. Under these circumstances, the
appearances of V in Eg. (3. 3) transform as a vector in M,
and if Y ¢ gatisfies the equation, so does Y'<,

Thus if (Y,h ) specify a stationary Einstein-Maxwell
solution, so do tY“,hjk).

The group of all unitary transformations A%, in M is
denoted by U(2, 1). However, since we are only interested
in the rays of this space rather than the vector, the ad-
dition of a common phase factor to the components of

Y« ig immaterial, We may therefore resirict ourselves
to the subgroup SU(2, 1).
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4. PARAMETRIZATION OF SU{2, 1)

It would be useful to have an explicit representation of
the most general SU(2, 1) matrix in terms of eight real
parameters, e.g.,“ Euler angles.” In SU2) or even SU(3)
this is relatively straightforward, due to Euler's theorem
that any finite rotation is a rotation leaving some axis
fixed. However, the presence of an indefinite metric
requires us to consider a number of different cases.

For example, in Minkowski space there are certain
exceptional “null rotations” which must be handled
separately. The easiest approach is to look at the eigen~
value problem for A. The usual result for unitary ma-
trices is that the eigenvectors form a complete ortho-
normal set and that all eigenvalues have unit modulus.
However, when null eigenvectors are possible, two ex-
ceptions arise to this rule. There is no restriction on
the eigenvalue corresponding to a null eigenvector, and
two null eigenvectors need not be orthogonal. For ma-
trices in SU(2, 1) we will have the following list of pos-
sibilities:

(A) two spacelike eigenvectors, one timelike eigenvector;

{B) one spacelike eigenvector, two distinct null eigen-
vectors;

{C) one spacelike, one {double) null eigenvector;
(D) one (triple) null eigenvector.

We will write the matrix in factored form, and need to

consider the following five simple classes of SU{2,1)

transformation:

M @t+w)- (u+w),
v=V+alu+w), 4.1)

Ww—w)— @u—w)— 2a* — ad*u +w),

(I @ +w)- W +w),
v v,

4.2)
@—w)-> w—w)+iclu +w),

() (w +w)— bl +w),
v— b*/b,
w—w)- (1/6%)u —w),

4.3)

av) @ +w) - u +w) + iplw —w),

‘I)——)U,

4.4)

u—w)— @—w),

(V) w+w)— w+w)—2c* ~ cc*lw—w),

v—v+ clu—w), 4.5)

w—w)-> w—w)

Here a,b, ¢ are arbitrary complex parameters and a,pB
are arbitrary real parameters. Let I II, etc. stand for
arbitrary SU(2, 1) matrices in the corresponding class.
We will represent A by first rotating one of its eigen-
vectors to a standard position, performing further ro-
tations which leave this vector fixed, then rotating back
to the initial position.

In case (A) we make one of its spacelike eigenvectors
coincide with v, writing it as
A=@1-V) (M-o-1V) - (I- V)1, 4.6)

In all of the cases (B), (C), (D), there exists at least one
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null eigenvector, and we bring it into coincidence with
(# —w). The form of A will then be

A= -({-IV-V)- (I-1)L, 4.7
Starting from a single solution all members of its sym-

metry class may be obtained by application of one or
the other of Egs. (4. 6) and (4. 7).

We will now look at the effect of these SU{(2, 1) trans-
formations on the physics. From Eqs. (2.6), (3.1) we
have

f= lw* + vo* —ww*)/ @ +w)u* +w*), (4. 8)
SU(2, 1) matrices belonging to classes I and II have a

particularly simple effect since they leave (u + w) fixed
and therefor f as well, Under I,

Y- ¥ +a, E-»E—2a*¥— aga*,
(4‘9)
f-f T T,
Under 1,
¥ - ¥ E-E +ia
-5 ’ (4.10)
f=f5 1o

These two transformations leave both the electromag-
netic field and the geometry unchanged, and correspond
to electromagnetic and gravitational gage transformations.

Under a class III transformation,

E - (bb*)1E, ¥ - (b*p-2)V. 4.11)
When b has absolute value unity the transformation is a
“duality rotation,” which changes electric fields into
magnetic ones and vice versa, but does not affect the
geometry. If instead we choose bb* = 1, the effect of

Eq. (4. 11) may be shown to be

ds2 - (Bb*)-1ds?,

a uniform conformal transformation or rescaling, It is
a well-known general result that such a transformation
always leads to new solutions of the field equations
either in the case of vacuum or when only mass-zero
fields are present.8

Class IV maps static vacuum fields into stationary ones
and is a transformation of the type discovered by Ehlers.1
Class V transformations do not preserye vacuum and
correspond to the ones found by Harrison,?2
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5. DISCUSSION

Given a stationary Einstein—-Maxwell solution we proceed
as follows, Determine f,w_,h & from the metric. Calcu-
late the potentials ¥, ¥ which obey Egs. (2. 2), (2. 4),
(2.5). The SU(2, 1) transformations given in Sec. 4 may
all be re-expressed in terms of their action on &, ¥.
(The potentials u, v,w are useful because they trans-
form more simply than &, ¥, but in practice they are
never needed.) The five-parameter family of solutions
may be obtained in one step from Eqs. (4.6), (4. 7), or it
may be built up in gradually increasing generality
through successive applications of Eqs. (4. 1)-(4.5).

There is one important circumstance in which a smaller
family will be obtained. If the range of the vector field
Y« happens to lie entirely in a proper subspace of M,
there will be certain transformations of SU(2, 1) having
no effect whatever. For example, if we start with a
vacuum field, Y% lies entirely in the subspace v = 0. The
duality rotation in the case is clearly futile! As pointed
out in Ref, 2, a Schwarzchild metric leads only to a four-
parameter family, Brill-NUT space? with the convention-
al parameters (m,l,e,d).

In fact, most known stationary solutions are either va-
cuum themselves or occur in a family with a vacuum
member. One might even wonder whether more general
ones are possible. However, Harrisonl® has given
Einstein—Maxwell solutions of sufficient generality to
be used in generating five-parameter families of solu-
tions.

It should be noted that certain other transformations are
known? which may be used to produce new stationary
solutions but which are not included in the present dis~
cussion. The methods used to generate the Kerr metric
and the recent Tomimatsu-Sato metricl! from static
solutions remain unclear.
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By using the irreducible decomposition on the two-dimensional light cone, the mixed basis matrix
elements for the three subgroup reductions of SO(2,1) are calculated. These matrix elements are
calculated for the principal series only and can be expressed in terms of well-known special
functions. As a consequence of appearing in this context, some new properties of these special

functions are given.

INTRODUCTION

An intensive study of the representation theory of SU(1,
1), the covering group of SO(2, 1), has been carried out in
recent years13, The basic motivation for such a study
stems from the crossed channel partial wave expansion
of the scattering amplitude in which the group S0O(2, 1)
figures as the "little group" of the spacelike momentum
transfer3. It is also of some mathematical interest to
make such a study. In this paper we are concerned with
different ways of realizing a unitary irreducible repre-
sentation (UIR) of SO(2, 1) in terms of different subgroup
bases and how these realizations are related. The re-
presentation theory of SO(2, 1) in the compact basis
corresponding to the subgroup reduction SO(2, 1) O SO(2)
has been thoroughly examined by Bargmann4. More re-
cently the UIR's of SO(2, 1) in the noncompact basis cor-
responding to the group reduction SO(2,1) 2 SO(1, 1) have
been studied. Mukunda5-7 has explicitly performed this
reduction for all possible UIR's of SO(2, 1) and calculated
the corresponding matrix elements. Macfadyen® has
given these matrix elements in terms of known special
functions, namely, the generalized Legendre functions of
the second kind®. The only remaining subgroup basis for
S0(2, 1) is that corresponding to the group reduction
$0(2,1) O T,. This has been partially investigated by
Vilenkin,19 who has given the matrix elements in this
basis for the principal series of SO(2,1).

In this paper we will show how by using the irreducible
decomposition of the space of square integrable functions
defined on the cone we can calculate explicit expressions
for the mixed basis matrix elements in the three sub-
group bases of SO(2,1)11, This method only enables us
to calculate matrix elements of the single valued princi-
pal series. The explicit expressions for the matrix ele-
ments which we obtain can be expressed in terms of well-
known special functions. As a consequence of appearing
in this context, we use standard techniques to derive
some new properties of these functions.

The content of the paper is arranged as follows;In Sec.1
we review the irreducible decomposition on the cone and
give the expansions on the cone corresponding to the
three subgroup reductions of SO(2,1). In Sec. 2 we carry
out the explicit calculation of the mixed basis matrix
elements.

1. THE IRREDUCIBLE DECOMPOSITION ON THE CONE

The problem we are concerned with here is the decom-
position into irreducible components of the representa-
tion

Ug &) = lig)

of functions |£) defined on the two-dimensional cone

[€,8] =63 — 83 —£§ = O

(1.1)
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(the reason for the notation |£{) will become clear sub-
sequently). This problem is well known12.13 to be
equivalent to the decomposition of |£) into homogeneous
components. This is achieved via the formulas

) == [0 18500 do, (1.2

o0

|60y = [ |tE) to-Lat. (1.3)
[Comment: The notation we will use is essentially that of
Vilenkinl0 with the exception that the generators of the
pure Lorentz transiormations along the i axis (¢ = 1, 2)
are denoted by N; and the generator of the rotation sub-
group is M. The corresponding one-parameter sub-
groups are then i,(a) = eVi®, r4(d) = €"3%,] Group-
theoretically, (1. 2) is an expansion of |£) in terms of the
irreducible representations

l=0—ip, €=0 (—o<p<) (1.4)
of SO(2,1). We recover the unitary case when 6 = — 3.
This corresponds to the single valued principal series
of SO(2, 1). Each irreducible component as expected
satisfies the homogeneity condition

|¢a; 0) = a°|&;0), areal. (1. 5)
The expansion (1. 2) is made explicit by choosing a co-
ordinate system for £. The three expansions are now
given for the coordinate systems corresponding to the
three subgroup reductions of SO(2, 1). (i) The spherical
or S system corresponding to the subgroup reduction
S0(2, 1) © SO(2). Here ¢ is parametrized according to

£ = wg(1, cosg, sing), 0 <wg<w,0= ¢ <27, (1.6)
From the homogeneity condition (1. 6),
£ p) = wgl-Q/2+irlp;p), (1.7
(Here we have introduced the notation [£;0) - = &;
— 14 + ip) etc.) By expanding |¢;p) in a Fourier
series according to
x .
500 = 22 |p; M) et (1.8)
M==c0
the resulting S system expansion on the cone is
o0
18y = 2 [ dplpsMiwg =@/l giMe, (1.9)
M==-%

(ii) The hyperbolic or H system corresponding to the

Copyright © 1973 by the American Institute of Physics 654



655

subgroup reduction SO(2, 1) © SO(1,1). Here £ is para-
metrized according to

‘é = wy*(COShﬁi , £ 1’ Sinhﬁt):

0< wy, <w,—w<p, <o, (1.10)
and we define n = sgnE'2 in the H system. To write the
expansion correctly, we split |£) into two parts accord-
ing to

&)= 1£), + &), (1.11)

|€>i=I£>6(i51)-
Then from the homogeneity condition (1.6) we have
l&;p,i) = Q)H*['(I/Z)Hp]lﬁi; p> (1_12)

By expanding |8, ;p) by means of a Fourier transform
according to

B30y = [ Ip; £, 7)™ ™2dr, (1.13)
the resulting H system expansion on the cone is
1), = [ ar [ dplp; e,y wy, T BT (1.1g)

(iii) The horospherical or HO system corresponding to
the subgroup reduction S0(2,1) > T;. Here T, is the
subgroup generated by M ; — N,. £ is parametrized
according to

£=wgl((r?2 +1),(r2 — 1), 2r),

0 <wz<o, —oolyrlw. (115
From the homogeneity condition (1. 6) we have
[&;p) = wpl-Q/2minlly o), (1.16)

By expanding |7, p) by means of a Fourier integral trans-
form according to

lr,p) = [ dslp,S)eis, (1.17
the resulting HO system expansion is
1&)= [2dS [ dplp,S)wgl-/2mislgisr, (1.18)

2. CALCULATION OF THE MIXED BASIS MATRIX
ELEMENTS

We give here those mixed basis matrix elements which
are necessary in order to completely determine a matrix
element of the form (A|U(g) | B), with g a general group
element. Here |A) and |B) are basis vectors of dif-
ferent subgroup reductions of the same UIR of the princi-
pal series of SO(2,1). The corresponding parametriza-
tion of the group element g is then of the form

g =g,08g, (2.1)

where g, and g, are the two one~parameter group ele-
ments generated by the diagonalized operators in the
bases A and B.

For the calculation of the $ «» HO mixed basis matrix
elements the parametrization of g is

g= 73(¢)h1(a)p1(1’) ,

(M3-Ng)r

(2.2)
where p,(r) = e . For the explicit calculation of

the general mixed basis matrix element we rewrite
(1.1) in the following form:
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f_: U(g)1p, S) wg (1/2ipeisr ds

o0
— E |p,M)Us"(1/2)+iPeiM¢'
M=-

(2.3)
with
£g = wg(1, cosg’, sing’).

This then gives the integral representation of the general
matrix element

@/2)+ip )
<p’1VIIU(g)lp,S) __f < > e’MV"e"’S”dr.
e (2.4)
Because of the group parametrization (2. 2) we need only
calculate the matrix element of g = %,(a). We then have
that

Wg/wgp=e¥r2 + e28),  ¢i0 = (r + je"9)/(r —ie 9

and the explicit expression for the mixed basis matrix
element is then

(p,M|h,(a)|p,S)

(— 1)Ms§-1/2
= (28)/2)~ippy 2¢-aS S>0
o @ w.1p(267%),  5>0,
=(p, —M|h(a)Ip,—S), S <0, (2.5)

where W, (Z) is the Whittaker function as defined in
Ref. 14, The standard techniques of the infinitesimal
method now enable us to derive the raising and lowering
operators in the index M of these functions. To do this,
we use a fixed column of the mixed basis matrix ele-
ment (p,MlU(g) |p, S} as an S system basis for the UIR
l=—3%—ip, € = 0 of SO(2,1). In the parametrization
(2.2) th1s basis vector has the form
(p,M|U(g)lp, S) = eiM{p,M|h,(a)| p, S) €7, (2.6)
and the generators of SO(2, 1) are expressed as differen-
tial operators in the parameters a, ¢, according to

d
Mg =—
3 3

, NyiN,= e*i"’(a—iiiqﬁ ie~e a_) :
da ¢ or (2.7

Then from the formulas, for the action of the generators
N, £iN,,on an S system basis® f,,, viz.,

(Ny #iNg) fiy = (~
we have on separating out the ¢ and » dependence the

well-known recurrence relations for the Whittaker func-
tions,

3+ FM) frgsy (2.8)

— xWyg, i d%) + (32 — M)Wy (%) = Wyppy (%), (2.9)
xWyy 3 p(%) + (3x — M)Wy ;o(%)
=(z+ip — M)z —ip —M)Wy_y ;. (x). (2.10)

These relations are, however, known to be true for the
functions W, (Z) quite generally (i.e., with y, »,Z com-
plex). As a further illustration of our calculation we
write the identity

S ds{p, Mlny(a) 10, S)<p, Sy (b) Ip,N)
= <p7Mlh1(a + b) |p;N> (2' 11)

explicitly and obtain the new identity
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L4 - -~
J:) dS[WM‘ip(e‘“S)WN__ip(ebS) -+ W.M’ip(ewas) ﬁ’—N,'ip(e bS)]

= 3(— DMeNp /200 (cosh(a + b)) (2.12)

where

Wyg10(%) = Wopy 1, (0)/ T(3 — ip — M),

We note in particular that if a == — b, the right~hand side
of this identity is $8,,.

For the calculation of the S «* # mixed basis matrix ele-
ments, the parametrization of g is

g = 7’3(@;11(0)}32(3)

(remember for our choice of H system coordinates on
the cone we have diagonalized N,). The explicit calcula~
tion is achieved by writing (1. 1) in the form

(2.13)

T [ a7 0@ lps#, ) wg/Drie girs:

m!
= 2 e

M=o

’M}@E—(ﬂzm; eime' {2.18)

with @y and ¢’ as in (2. 3). The integral representation
of the general matrix element is then

-3 (éﬁgﬂ)wu/z»ipe”‘“’e’”ﬂids
A .
21 s (2.15)

Because of the parametrization (2. 13) we need only cal-
culate the matrix element of g = k{a). We then have
that

(p, MU |p; £, 7)

W

= cosha coshg, * sinhe,
Wy

oid’ = sinha coshg, * cosha + isinhg,
S . L4
cosha coshB, * sinha

and the explicit expression for the mixed basis matrix
element is then

o-stiman (& — 10 —i7)
I(z —ip — M)

X @/iP(— i sinha),

{p,MIRy(a)lp; +,T) =;-

(2.186)

where Qi {Z) is the generalized Legendre function of the
second kmd as defined by Azimov®. The other matrix
element is given by the relation

(s MRy(@) 1p3— ) = (= DM+ p,MIhy(— a) |5 +,— 7).
(2.17)
Using the infinitesimal method we may, as we did with ‘
the Whittaker functions find the raising and lowering
operators in the index M for the @/ (Z) functions as

they appear in (2.16). The § system basis vector is
now, for the parametrization (2.13),

(p,M\Ug)|p; £, 7) = ¥ {p,M|h,(a) |p; £, T) ei"B,

(2.18)
and the generators N, = N * iN, have the form
N, = e*#® (—a~ + { tanha Lyt -l) . (2.19)
da 3¢ cosha 28

Using (2. 8) and separating out the ¢ and g dependence,
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1 f ar[@s,(: sinha)§ %,

we get the new recurrence relations

(Ji — M tanha +

(1/D+ir(; sinha
da cosha) e, ( )

={M+ 52+ pﬂQQ%ﬁW (¢ sinha), (2.20)
d T .
— + M tanhg — ——} Q{1/2P{; ginha}
(da cssha)Q”’M ‘ (¢ sinha)
= Q{L{2i*(i sinha).  (2.21)

The analogous identity to (2. 12) for the § < ¥ mixed basis
matrix elements is

(¢ sinhd) + (— 1)MN

'n‘

X @F,, (i sinha) @, (— i sinhd)]

= P+ r(cosh(a + b)), (2.22)
where

PO T 0 —iT : .

@5, (i sinha) = m Q(Iﬁ’g}np(—- i sinha)

Again the interesting case of this identity is when a =
~ b,

There are two group parametrizations necessary for
the calculation of the H0 +» H mixed basis matrix ele~
ments, viz.,

& = ha(Bhy(alp4(7), = -, (2. 23a)
g = ka(BYrq(a)r 3(mp (7)),

The explicit calculation is achieved by writing (1.1) in
the form

7=+ (2.23b)

z} f dr U(g) lp, +, T) Wy ~(1/2)+ip "B:&

1/2)+ 4
= [2 dslp,$)wp 2 (2,24)

with

tg=We{r2+ 1,72 ~1,2¢".
The integral representation of the general matrix ele-
ment is then

1 DTSNV T
(p,S1U@ P52, 7) = I (3—> e e g, .

— \Wys

{2.25)
Because of the parametrizations (2. 23a), (2. 23b) we need
only calculate the matrix element of k,(a) for n= —and

hy(@)r g(m) for n = +. We then have that
(QS:’!WI{&} = g% COSh%Si,fr e g@ tanh%ﬁi,

and the explicit expression for these matrix elements
is
(p,Slhy(@) p; — Ty = (0, Sl (@)r3(mIp; +, T)

= 1/27 (2 e ) C/DHirIB(L — ip — iT, § — ip + iT)e 5"

x yFy(3 —ip —iT,1 — 2ip, 2iSe), (2. 26)
where
B(x,y) = T(x)T(y)/ T(x + ¥)
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and 11F1(b; c; z) is the confluent hypergeometric func~
tion15,

We also give here the expression for the matrix ele-
ment {(p, S|k (@) p; +,7),it is

(0, SIhy(@) o3 +,7) = 4%1 (— deesz)-a/amie

X [[(z —ip + in)W_;, _; (— 2iSe?)
+I(3—ip— IT) W, -;,(2iSe 9]. (2.27)
We also have directly from the integral representations
the asymptotic equality

(p,Mihy(@) 05 £, 7) = [p,S|hy(@)p; £, )]sy,  (2.28)
which holds for large a. This is the direct analogy of a
similar relation which is known to hold for the sub-
group reductions of SO(3,1)12,

CONCLUDING REMARKS

We have seen in this paper how the method on the cone
can be used to directly calculate the mixed basis mat-
rix elements for the principal series of SO(2, 1). The
use of this method for calculating matrix elements is
due to Verdievl5 and has been extensively used for the
subgroup reductions of SO(3, 1)12, From our calcula-
tions we can immediately find the overlap functions by
putting a = 0. These overlap functions can be used to
factorize the overlap functions of the subgroup reduc-
tions of SO(3, 1). An example of this factorization is

(J,m|z, 1, s) = (J,m|x, ,m){m|s).

Here |J,m), |+, l,m),and |+,], s) are basis vectors for
the same UIR of SO(3, 1) corresponding to the group re-
ductions SO(3, 1) D SO(3) © S0(2), SO(3,1) D S0(2,1) D
S0(2), and SO(3,1) D SO(2,1) 2 T, respectively. The
Lorentz group labels have been suppressed in these
vectors. The matrix (m|s) is then the S=HO overlap
function which is given by (2. 5) after putting ¢ = 0.
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[Note: We have assumed here that ! is in the principal
series I = — § + ip, e = 0 of SO(2,1),] We intend in the
near future to make a complete study of matrixelementsin
the subgroup reductions of SO(2, 1) for all possible UIR's.
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A linked cluster evaluation of contour integrals in statistical

mechanics
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A linked cluster expansion is obtained for the logarithm of the partition function which constitutes an
asymptotic expansion in 1/N for a normal system. The result is obtained by means of a new and rather
general way of asymptotically evaluating a type of integral common in statistical mechanics.

1. INTRODUCTION

The statistical mechanics of many-particle systems is
usually studied employing the grand canonical ensemble
(GCE). This choice is dictated by its being, in most
cases, the most convenient ensemble to use for quantum
problems and the most appropriate one when using
second quantization or, in general, quantum field theoreti-
cal methods. Since the principal interest in quantum
statistical mechanics is in systems large enough so that
the results are almost ensemble-independent, this choice
of ensemble is usually satisfactory.l

On the other hand, as we have discussed in an earlier
paper2 (hereafter denoted I),there are circumstances
under which it is either convenient or, in certain cases,
necessary to use other ensembles with various con-
straints, such as fixed number of particles N (the petit-
canonical ensemble), fixed N and constant pressure (the
isobaric petit-canonical ensemble), fixed N and the
energy either constant or constrained to a small varia-
tionEy—a <= E =<Ey + a,a < E, (the microcanonical
ensemble).

In I we developed an asymptotic expansion in I/N,for

the constant volume and constant pressure petit-canoni-
cal ensembles, more specifically an asymptotic expan-
sion for the respective partition functions for the two
ensembles. In the present paper a much more powerful
method of handling the asymptotic evaluation of the con-
tour integrals is developed. This is a rather general
technique which has numerous possible applications. By
this means we are able to obtain a linked cluster diagram
expansion for the logarithm of the partition function
Zy(V,T),i.e.,for the thermodynamic potential which in
this case is the Helmholtz free energy [multiplied by

— (RTY1]. We are further able to exploit the form of the
expansion to develop a perturbation expansion for the
petit canonical ensemble. This result constitutes a more
fundamental proof and a generalization, with some minor
corrections, of the earlier work of Brout and Englert3
and Horwitz, Englert, and Brout4 for interacting fermions
and of De Coen, Englert, and Brout5 for bosons.®

This linked cluster evaluation of the contour integral is
formulated in the present work for the special case of
the constant-volume petit-canonical ensemble. The
present formulation can be expected to be valid for a
single phase region, not too close to a phase transition.
Thus for quantum systems these conditions will, crudely
speaking, correspond to the assumption of what is called
a “normal” fermion or boson system. We may also
speculate that a suitable resummation of the series may
make the method applicable to cases having a phase
transition.® We shall discuss some conditions of validity
for the expansion, but since we are not yet able to rigor-
ously define the conditions, the expansion remains, in
fact, a formal expansion, subject to test of validity in
each application.

In I we used a complex integral representation of the
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partition function; by selecting a contour tangent to the
steepest descents path, we obtained a general expression
for the asymptotic expansion for Z,. The present for-
mulation allows the contour to cross the real axis at an
arbitrary point P if there is a sufficiently large region
of analyticity containing both P and the saddle-point of
the integral. We are then able to obtain a general ex-
pression for the asymptotic expansion for the logZ,.

A specific application of the above procedure leads to a
perturbation expansion. If one chooses the point P to be
the saddle point of the partition function Z o> Correspond-
ing to some reference Hamiltonian H ;, the linked cluster
expansion obtained combines both a perturbation expan-
sion and an asymptotic expansion in 1/N. A comparison
with the previous work mentioned above3~5 shows agree-
ment with their results to order N,for normal systems.
For terms smaller than order N, there are corrections
to earlier work coming from 1/N corrections to the
unperturbed distribution and correlation functions. When
setting up this asymptotic perturbation expansion, it is
convenient for some applications to also regroup the
ordinary linked cluster graphs as obtained from the
grand canonical ensemble expansion. This regrouping is
related to the operator diagram formulation of Brout and
Englert3 and the grand canonical ensemble methods of
Balian, Bloch, and De Dominicis.? To order N this re-
grouping is quite straightforward, being closely related
to Goldstone graphs for zero temperature perturbation
theory; carrying out this regrouping to higher order in
1/N becomes increasingly complicated to describe as
compared with the usual Wick's theory results obtained
for the customary grand canonical ensemble formalism.

In a forthcoming paper we develop a linked cluster ex-
pansion for the microcanonical ensemble. This micro-~
canonical formalism is currently being exploited for the
study of critical phenomena.

2. THE LINKED CLUSTER EXPANSION

The partition function Z4(V, T) is the appropriate stati-
stical mechanical function to describe all equilibrium
properties of a system with a fixed number of particles
N contained in a volume V in contact with a heat reser-
voir at temperature T':

Zy(V,T)=Tr® exp (— H) = 7, exp [~ BE (N, V)]
= eXp [_ BFWN,V, T):[: ®

where H is the Hamiltonian for the system,f -1 = kT, k
being the Boltzmann constant, and where Tr ® denotes
the trace in any convenient representation spanning the
Hilbert space of eigenfunctions of the N particle Hamil-
tonian, and s enumerates the eigenstates of H.

Z, has the well-known complex integral representation®

Zy(V,T) = (1/ 2m) [ (@/$41)QQ, V, ), @)
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where the contour C encloses the origin, but excludes
any poles of Q({,V,T) and

QE,V,T)= 5 ¥ Zuy(V,T). (3)
N’=Q

This then readily becomes the unresiricted trace in a
Fock space representation (denoted Tr) and particularly
with [N,H] = 0,i.e.,the number operator commuting with
the Hamiltonian

Q(L,V,T) = Tr exp(— BH + IntN). (4)

The quantity in (3) or (4) is seen to be the analytic con-

tinuation of the grand partition function for complex
values of the fugacity z = expa.

It is then convenient to transform Z, to the form
Zy(V,T) = (1/2m) [(& /%) exp[$(0)] (5)
with
¢, N, T) = In[Q(§,V,T)] — N In¢ (6)

and then to introduce the variables

In{=u+iv=y (M
whence
Zy(V,T) = (1/2mi) [ ,dy exp[¢(e?,V, T)], (8)

where C’ is the mapping of the contour C on the (u, v)
plane. Let us assume for simplicity a single phase re-
gion in which Q({, V, T) is analytic and also has no zeros
out to some radius l§|<|§ | .9 Then we choose a contour
C to be a circle with radius €os 180l <1t, | or,in terms of
the contour C’ in the y-plane,

u=uy=l{,|, —r<v<nm

Then

Zy(V,T) 1 f“ dv exp[d(e""*,V, T)]. (9)

Under the extreme conditions defined above, this ex-
pression would be exact. The usual procedure is then to
choose > g, by the saddle-point condition 3¢/3¢

[€ = e", V,T) = 0,u, = a being 8 times the chemical
potentlal and take the steepest-descent path through

£ = e®, which is normally along v. This we shall not do
at present, but rather leave {, arbitrary.

Let us proceed to expand ¢(e“?"”, V, T) in iv,
o0

P(e "V, T) =

(10)
where
E ar
C’ (ug) = — In[Q(e?, V,N)] = — C',(uy),
o =5y [ ] Jug C oo an
C’y(ug) = In[Q(e"°, V,N)] = Bn(e"°, V, T),

and it is to be observed from the definition of 1n@Q that
the C/, are the rth-order cumulant averages of the num-
ber operator, evaluated at the fugacity exp(u,). It is con-
venient to use, in place of the quantities C’,, the quantities
C,. which are defined as follows Cy = Cy — Nu,. C, =
C{ —N,and C, = C}, for » greater than 1. The C, are
then the cumulant averages of N — N, the fluctuation of
the number operator from the value N. Then (9) can be
written
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Z})[C’,(uo)(iv)'(v!)'l] — uoN — N,

659
Zy(V,T) = (1/20)] dv exp[Cq + Cqiv — $C,02 + S(v)],
(12)
where
= @acr(“o)(iv)'("!)d' (13)

This result (12) can now be represented in the following
operator form where the limits of integration can be
replaced by + © up to terms asymptotically small,

Ofexp(— C,)] cf. Appendix A):
Zy(V,T) = (1/2m)e% exp[D(a/acl)]L”%’
X exp(ivC, — 4C,02) (1)
with
D(EQC-;> g} C,(ue)r )" l—c—lr (15)

On integrating, (14) becomes

Zy(V,T) = (e%/y21C,)eP exp(— 3CL/C,) (16)

and then

In[Z,(V,T)] = C, + Inv21C, + In(expD) [exp(— 3C%/C,)].
(17

Exploiting the algebraic structure of the exponential as a
generator of a cumulant expansion with the differential
operator expD taking the place of an averaging, we find

In(expD) [exp(— 3C2%/C,)] = Z;‘,l(—écz)wn[cﬂ, (18)

where the u, are defined in analogy with the usual cum-
ulants:

12[C3] = ePC$ — (ePC3)2 = C4 + 4C5C,
i3(C3] = ePC§ — 3(ePC3)(ePC$) + 2(ePC4)
paC¥l=...; (19)

in general, then,

B, [%2] _T In(ePe* *%) veo” (20)

]

This already represents a substantial simplification
over the result in I But one can make use of the analogy
of the exponent — /C2 with a two-particle dlagonal
potential for whlch —1/C, is the interaction, 3 1 the sym-
metry factor, and the interaction is regarded as quad-
ratic in C;. The result of this purely algebraic connec-
tion between single-variate and multi-variate cumulants
is that In(expD) [exp(— 3C%/C,)}] can be expanded in a
linked cluster expansion in the quantities p,[C,]. Sym-
bolically, we write

In (expD) [exp(— $C3/C,)] = L{p,[C, ]} (21)
We notell that u [C,]=C

One has the following prescription for the linked cluster
expansion: Draw the usual unlabelled line graphs con-
sisting of points (vertices) joined by lines (bonds). The
contribution of each bond is (— 1/C,), and that of a ver-
tex with » bonds attached C,. There is also a weight
factor associated with each diagram corresponding to



660 Gerald Horwitz: A linked cluster evaluation

the order of the symmetry group of the diagram. These
diagrams are essentially the same as those used for the
Ising model by Horwitz and Callenl2 (HC). The proof
there is essentially algebraic and goes through here as
well. There is one trivial modification that while in HC
the interaction was bilinear in unequal operators, here
the operators are equal. This merely adds to the dia-
gram scheme bonds which are connected at both ends to
the same vertex.

There is one other difference: Since S(v) begins with C,,
there are no diagrams with only two bonds attached to a
vertex. Thus,for example,

(a) Y has contribution (3!)1C;C3(— C,)3,
(b) o—o has contribution (3)3C%(— C,)3,

(c) 8—— has contribution (3)3C5C,(— C,)-3,
(d) < has contribution (3)(1/3!)(— C,)-3C%.

Let us now consider the classification of the diagrams

in order of N. For a normal expansion,all C, are of
order N. Thus, every bond carries a factor 1/N, while
every vertex carries a factor N, The net result is that
only Cayley tree diagrams, i.e.,diagrams which have no
closed paths are of order N. Diagrams having a single
closed path are of order NO, Diagrams with two closures
of order N1 etc.

The sum of all Cayley tree diagrams corresponds to the
Co(uy) being replaced by Cy(u’),#’ being the saddle-point
value of y in the integral (12). To verify this, we first
note the obvious converse that had we chosen u, to be
the saddle-point value, C, (#o) = {(N) — N = 0; there
would remain none of the graphs which are not multiply
connected and hence none of the graphs of order N. In
Appendix B we evaluate the sum of the Cayley tree dia-
grams and confirm the above statement. Cayley tree
attachments to stars, diagrams with closed parts when
summed replace the dependence on u, in the C,(;) in
the closed parts by C,(u’).

3. PERTURBATION THEORY

The linked cluster expansion developed in the last sec-
tion for the Helmholtz free energy can readily be made
into a linked cluster perturbation expansion for the
petit-canonical ensemble. The central feature of the
method of Sec. 2 was the freedom of choice of the point
where the contour crosses the real axis. We shall now
proceed to set up a perturbation expansion inside the
integral for ¢. The Hamiltonian for the system being
first assumed separated in some convenient way into a
single particle part H, and some interaction part AV:
H=Hy+27, (22)
A denoting a coupling constant characterizing the per-
turbation. Setting up a perturbation expansion for

¢ = ¢y + X, (23)
where

¢o = In Tr [exp(— 3)‘}0 + N In¢)] — N Ing,

X = In(T exp(— fo ﬂazum‘/(u)»(,, (24)

and V(u) = [exp(ufy)]V [exp(— ufly)], the (imaginary time)
interaction representation of the operator V and
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(A), = [TrA exp(— ﬁﬁo + In¢N)]/Tr exp(— BI;Q + N Inf).
(25)

If we now make the specific choice of {,that In{, = a,,
corresponding to the saddle-point value for the single
particle Hamiltonian H,

8¢ 0,

3 Int CTEXP %o = (26)

which just corresponds to choosing the chemical poten-

tial for the unperturbed system macroscopically to give
(N)o = N, the zero denoting a density operator defined in
terms of H,,as in (25).

Let us assume that the domain of analyticity of ¢(§)
includes both the saddle point of ¢ (correspon‘gling to H)
and the saddle point of H, (corresponding to H), in
addition to which it extends out a sufficient distance from
both saddle points to attain the asymptotic form describ-
ed in Appendix A.

We can then carry through our previous expansion, but
now have a new interpretation of the expansion,and a
separation into two types of terms: one corresponding to
finite N corrections to the partition function of the H,
and the other to contributions due to the interaction
terms, order N and smaller.

Expanding the exponent ¢,taking { = exp(a, +iv), we
have

0 jv)»
6 = folae) + 5 flag) o,
© (io)»
X(v) = ho(ao) + Z h(ao) YRR : (27)
n=1 .
where
fo =M@[N —N], (28)
while
h, = M, [N — N]—MO[N —N], (29)

i.e.,the f, are the cumulant averages of the mean fluctua-
tion of the number operator evaluated with a density
operator determined by H,, while the 2, represent the
modification of the nth-order cumulant due to the inter-
action terms. The k,(a,) will be obtainable as an expan-
sion in V by means of the usual Wick's theorem results
derivable for the grand canonical ensemble, and hence
will be representable as a sum of graphs in one of the
various graphical expansions known for the grand canoni-
cal engemble.13

We have as noted above chosen f, = (N)— N = 0. Asymp-
totically as before

Zy(V,T) = e“"’Xf_: g—;ﬁ exp[— 3v2f, + hyiv + T'(v)], (30)

where
(o) = 3 fulg) o 4 S hy(arg) (31)
n=3 n! n=2 ni
=2 Valeollr (32)
n!
with .
Vo=hy, Y, =f +h,, n=z=2. (33)
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Thus

In[Zy(V,T)] = fo + by — 2z In(2nf,)

+ In {exp[D(2/3h)] exp(— $h2/f2)} (34)

= fo + ko — 3 In(2nf,) + L{f,.h}, a4], (35)

where L is the sum linked graphs.

The linked cluster result is immediate as before. There
are now, however, two modifications. First the separa-
tion graphically into f, vertices and k, hypervertices:
One is to be indicated by a small dot and the latter by an
open large dot. Secondly,the large dots contain vertices
of order two, whereas our previous result began only
with vertices of order 3.

The first two terms of (34) represent the Legendre trans-
form of the grand potential to the Helmholtz free energy,
but evaluated at the macroscopic chemical potentiall4
corresponding to H,i.e., a,, rather than that correspond-
ing to H,denoted a. The effect of the terms in the expan-
sion of order N will, by arguments like those at the one
of Sec. 2, shift @, to @. A remark is in order about the
partial summations in the coupling constant and in 1/2
(see,for example, remarks in Ref. 3). The hypervertices
h, as well as k, are obtainable from the infinite sum of
perturbation graphs in the grand canonical ensemble
formalism, here evaluated, however, at a rather than a.
This is just the opposite extreme from the more common
case where one is expanding the G.C.E. graphs term by
term in the coupling constant in terms of the fully inter-
acting chemical potential a. Both of these cases repre-
sent a separate resummation—in one case of the pertur-
bation expansion and in the other of the chemical poten-
tial—in a mutually inconsistent fagshion. There are a
number of problems, even quite trivial ones, where this
leads to serious difficulties; maintaining this consistency
can be shown to be equivalent to conserving variational
properties of F and preserving the Hugenholtz-Van
Hove-Pines type relations.15

This type of consistency can, of course, also be maintain-
ed in the GCE formalism by evaluating o at each order
of approximation, determining ¢ by maintaining the
derivative of the grand potential equal to zero at fixed N.
The advantage of the present method is in having an
explicit graphical representation to keep track of the
consistency.

4. COMPARISONS WITH OTHER PERTURBATION
EXPANSIONS

The perturbation expansion for the free energy developed
in Sec. 3 as an asymptotic expansion in 1/N will now be
examined in some more detail and an explicit compari-
son made with the constant volume petit-canonical en-
semble perturbation expansion of Brout and Englert,

ef al.375 The terms of order N (topologically Cayley
tree diagrams) represent the Legendre transform of the
grand potential in which the macroscopic chemical
potential has been expanded out diagrammatically in
terms of the interaction. It is convenient to speak of the
perturbation terms as divided into two classes, GCE
linked cluster diagrams corresponding to the hyper-
vertices &, (beginning with k) and the correlation-
bonding of these disjoint linked parts to make up the
graphs analyzed in the previous sections. The k, hyper-
vertices are, of course, just the nth derivative with res-
pect to a, of the sum of the GCE linked graphs, which
could be evaluated in any of the various GCE perturba-
tion schemes. By choosing a specific formalism for the
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GCE expansion we shall make an explicit connection with
the Brout and Englert expansion. We shall discuss in
detail the Cayley tree terms, which for a “normal” fer-
mion or boson system represents the order N terms.
For that case (order N and normal fermion or bosons),
our result is in agreement with the previous canonical
ensemble perturbation results.16

Of the various forms of perturbation for the grand poten-
tial developed by Bloch, De Dominicis, and Balian,17 a
particular one? is most appropriate to make connection
with the petit-canonical ensemble expansion of Brout
and Englert. This expansion is obtained by a rearrange-
ment of the terms of the usual formalism and can be
obtained in both time dependent and time independent
forms. Let us refer the reader for the detailed rules of
the expansions to the original papers or the review of
Bloch.17 For our present purpose we need only to know
certain characteristic properties of the rearranged
expansion. The rules for the linked parts given below
are identical with that of the Brout-Englert expansion
except for being evaluated at o instead of a.

(1) The central point of difference from the usual linked
cluster methods is the handling of terms having more
than a single pair of equal indices. In principle, the
approach could apply to multiple repetitions of pairs of
operators with equal indices. In practice, only for graphs
in which the repeated indices occur from momentum con-
servation (macroscopic limit),i.e., as self-energy in-
sertions—leading to the necklase structure in the nota-
tion of Balian et al.7—are these effects of order N. We
shall not consider except in passing the higher order
terms in this rearrangement (but cf. Appendix C).

(2) The rearrangement of these repeated indices leads
to a new definition for the linked diagrams, in which
there are two modifications:

(i) aline with repeated indices and self-energy inser-
tions is unidirectional, only descending or ascending
lines for a given propagator, like in the Goldstone
expansion.

(ii) Such state has only a single statistical factor

n(r) = (a"(’r)a(r))o for descending lines and n’(y) =
(a(r)a*(r)}o for descending lines, no matter how many
self-energy insertions. This is indicated in the dia-
grams by drawing a dotted line for all lines connecting
self-energies but one.

(iit) In addition to the single necklace, which will com-
prise, for us, the redefined linked GCE diagrams—the
redefined hypervertex h,—there are a set of disjoint
necklaces with a common index in all internal lines of
the necklaces being dashed lines, and there is a common

s s \
| p- = A0
[
S ;S /'S
a b c
S O

\ /
/

d e

FIG.1. A comparison of the graphs of the conventional GCE eXpansion
and the modified one of Brout and Englert or Balian, Bloch, and De
Dominicis.
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statistical factor for » necklaces having a common index,
which is just m (s), the nth cumulant average of n(s).

Thus if we consider the diagrams in Fig.1,the graph of
Fig.la is replaced in the above described formalism by
the two graphs Figs.1b and 1l¢ comprising a redefined
linked graph (1b) and two disjoint linked graphs linked
by equal-index correlation bonds (1¢). Correspondingly,
the graph at Fig. 1d disappears as a linked graph and
appears only as an equal-index correlation linked graph.
We note further for reference purposes that all the
dependence in the GCE perturbation on a is contained in
the dependence in the functions n{r), n’(r) and the equal
index cumulants m{1,2..,,N).

If we now rearrange our perturbation expansion within
the 2, and &, hypervertices, in the manner described
above, we obtain for each such hypervertex the following
structure: the redefined hypervertices i, , which we
shall denote by open squares corresponding to the above
redefined linked parts and equal index correlation bond-
ing of these k) hypervertices. As far as we have de-
scribed this expansion of the &, we have only the leading
order contribution {in N}, and the structure consists only
of Cayley tree structures of equal index correlation
bonding of the k] hypervertices.

Having done the above, we now have two types of vertices:
the f, vertices and the k] hypervertices, the latter being
joined by two types of correlation bonds, the solid line
and the dashed-line, equal-index, correlation bond. Since
the equal-correlation bonds connect specific equal states
of disjoint linked parts, and since it is otherwise conven-
ient to separate a correlation link which acts several
times on the same state, we shall introduce an infra-
structure on our %’ hypervertices: a window to a par-
ticular labeled line on the linked graph. Then,to low~

E—D

+

S S)
——————— k.

FIG.2. The combination of the second-order correlation term of the
modified GCE graphs and those in the expansion of the present work,

a

%

7z
7z

Z

A

e
e

”
Za
)
4

-

o

~
@*‘%*% Z% &

b,

FIG.3. Two classes of third-order correlation terms combining the
modified GCE graphs and the graphs of the expansion in the present
work,

N
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est order we have (Fig. 2), denoting by L’ the evaluation
of the redefined linked graphs, then defining18

021

_aLn(n); _ _
" anr)on(s)’

Glr) = PRrma G(r,s)

ct. (86)

The sum of the contributions of the two graphs of Fig, 2
then give

323 G)G(sYm ()8, — mg(")’”z(s)/§ mo(t)) (37)

TS

and we define m,{r, s) by

myly, s} = my{ry — mz(”"}mzfs}f’?{i m,{t). (38)
For the next order one distinguished two classes of
graphs, those of Fig. 34 having only pairs of states
connected by correlation, while those of Fig. 3b have
correlations between three states, The contribution of
the sum of graphs in Fig. 3a gives

3 Eg G{r)G(s, )G (wpm o (r, sm 5(¢, u), (39)
¥, 8,48
and the sum of the graphs of Fig. 3b gives
(1/31) D G )G(s)G(tm 37, s,1), (40)
r.s,t

where

my(r,s,8) =ma)d, B, — [malrimy(s)/Lima@®)6 .,
— my(Shm o (r)/Lim ()8,
— m gt y()8 5 ,/2im 5(2)
+ [2omy(0]-%] Etmg(r)mz(S)mz(t)

¥ &,

+ m 5{Shm 5 (rhm 5 (f)
+ m3(i}m2("}7’n2(3)] -
= om 3(7/5}"33("')”’52 (Smg{t%(Emz(u)) 3,

Thus the resulting correlation bonding on combining the
two classes of terms is just the multivariate cumulant:
this result together with the identical structure of the
linked parts leads us to conclude that our expansion is
identical to order N with that of Brout and Englert.

In the present paper we will not go into the details of the
higher order terms in this formalism. Carrying this
procedure to higher orders leads to a much more com-
plex set of rules for the structure of the hypervertices
than the usual GCE perturbation expansions. In Appendix
C we illustrate some of the higher order effects. In one
example showing a typical type of term contributing a
higher order contribution to m,(Z,5) and in the second
case indicating a type of 1/N diagram leading to treat-
ment of equal indices not on a necklace in a linked
diagram (hypervertex).

One might well raise the guestion why one should bother
with the complications involved in this rearrangement of
the GCE to higher order, since as far as the treatment

of the 1/N terms goes, one can handle the matter more

simply with the perturbation expansion. There are two

motivations, one formal and one practical, though it may
well be that it is generally desirable whenever such ex-
pansions in 1/N are of interest. The formal argument is
that such an expansion represents the obvious generali-
zation that one would expect to be of interest for a finite
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system for which the functional expression of the free
energy is given not only in terms of single-particle
distribution functions, but in terms of the many-particle
correlation functions, and our m (1,2, ...,n) are just of
this character. The practical reason of interest is our
experience in working on a pairing approximation for
interacting bosons, where, in order to reestabligh the
order-N character of the leading order terms of the
linked cluster expansion, it was necessary to establish
this functional dependence on the canonical ensemble
correlation functions, the above m ,(1,2---).

APPENDIX A: ASYMPTOTIC PROPERTIES OF In Z

The object of this appendix is to show more specifically
the structure of the terms ignored in arriving at (12) or
(14). In fact, much less restrictive conditions on the
analytic properties of ¢({) are necessary. It will be
clear that if ¢({) is a decreasing function of { along the
contour chosen and has a domain of analyticity of radius
O(N-1/2-m) 11 > 0, that will suffice to give (12) as the
asymptotic expansion, ignored terms being of order
exp(— N1).
Let us then consider the dependence of the integral in
Eq. (12) on its limits here to be denoted + §,, trans-
forming to the variable ¢ = VC,/20,t, = VC,/26,,

CO

[ogre™™T® (A1)

21VCy/2 "o

where (cf.I)

I(to

T(t) = 5 D":f‘t)n , eT® = 35 it)» %, <&>m' 1

n=1 ! n=0 {m,} r! m,!
72 Trm,=n (A2)
and
= (2/C,)"/2C,. (A3)

From (Al) and (A2),we find, noting that odd moments
vanish, that even ones are given by

fotodr T

where y(x) is the incomplete gamma function; this can be
written as the difference of the complete gamma function
and

-1/2 -t
" € = V(Vl + %,t(z))’

¢ -
L attme™ = (a4)
(4]

o0
I‘(v,a):L dr tv-ie-T, (A5)
Therefore,
I{ty) = —1)27[T'(n + 3) — T(1 + 5,12)
0 znﬁﬁ?o( [rn + 2 =10 + 5,59)]
DN\Nmy 1
x ¥ %°<-1> T, (a8)
{m,} r=0 \7! m,!
Zrm,=2n
r
We note that
) "(P_f)"" 1
(m'r} r\r! m'.!
Evm,,=2n
_ D%n D%n-a ﬁ D%ma (&)2 1 .
2n)!  (2n— 3)1 3! —3)! 27
(2n)!  (2n—3)13 (2n— 3)! \31 (A7)
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can be obtained from the generator
D, a7
e — D2">. A8
l: p(rzzs. r! 6DV)]( 1 . (A8)
Hence
 w I'n + 3) — I(n + 3,3
() = 55 o T+ D — T+ 519)
Vzcz n=0 '(3)
® D, D2
X exp(Z; Zr o [ 1 :D (A9)
n=3 7! I (27’!

We note further that
T(n + $)/T3) = (2n)!/22%n!

and asymptotically

P(n + 3,13) = t3¢3[G, (1)), (A1)

rl—n— %
o I(E—n)

D lizm + o),
(A12)

and if C, is of order N, as is the case for normal syst-
ems, then if 04 = O(N'l/z"l) for 7 > 0, exp(— t3)(— Nn)],
and for a macroscopic system; these do not contrlbute to
the asymptotic expansion.

Combining (A10) and (A12) with (A9), we obtain

0=

G,(ty) =

1 D
I(t,) = e M0 g -
(to) V21C, poa) 7!
4 -D}/2 -t2 hy
X —— 1
aD7 <e P2 (2 Y "G"(t0)> (A13)
and, going back to variables 6,,C,,
c
e’ D< -c¥/c —c,02/2  (C100)2"
I(6,) — e le V72— g 2 _ ]
(60) V2C, 2 (2n)! Gal 0))
Al4)
with (
'l —n—++m) 2 \m C,08\™
oo 3, L o[58
m=0 I(z—mn) Cy8, 2
(A15)

Thus the results of (12) are verified asymptotlcally pro-
vided that Czeo = O(N7),i.e.,0, = O(N-1 /2=m),

APPENDIX B: SUM OF CAYLEY TREE GRAPHS

(i) Summing insertions on a single vertx, we obtain the
integral equation from the Cayley tree sum

~<: + <+ (B1)
thus on adding + —e — —e |
C,=C,u~7C/2)+C, (B2)
whence
Ci(ug— C1/Cy) =0,
which has the solution
C,(up) =0, w =ug—C,/Cy (B3)
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<

%

FIG.4. A higher-order term in the evaluation of my(r,t).

a b
.
c d

FIG.5. An example of higher-order structure of the modified GCE
graphs.

determining uj, as the value for which

MNy=N and T, = Cyluy— up). (B4)

(ii) The addition of Cayley tree branches to any vertex
produces the replacement at C,, by C, (ug).

(iii) The sum of all Cayley tree graphs is given by

e — X + o—o — —H—e ,
CHup) 1 CR@my) 1 CRp)
Colup) + ———— 3 — g 5 = Colup);
C2 2 Cz 2 Cz

The last term arises from the fact that the renormaliza-
tion of a single vertex there is missing not only the
gingle term*—*, but also the term . The x
vertices represent the same expression as the large dot
but with the symmetry corresponding to the vertex
distinguished.

Thus the net result is that the expansion no longer has
Cayley tree graphs and that all vertices C (uy) are
replaced by C (u}), C,(#g) = 0. The C_ play the role of
dummy variables.

APPENDIX C: ILLUSTRATION OF SOME HIGHER
ORDER CORRECTIONS, IN 1/N

Case 1: An example of a higher-order correction to
my(1,2). The contribution to m,(»,¢) from Fig. 4 is

- mz(r)Zs)m 3(8)m 3(t)/ (m,)3.

Case 2: A higher-order term in the rearranged GCE
linked cluster expansion.

The term of Fig. 5a adds to the class bonds which close
on the same hypervertex O—O an equal index correlation
bond. The contribution of Fig. 5b is of the form of two
disjoint graphs joined by a pair of equal index correla-
tion bonds. Figure 5c indicates that self-energy type
terms remain even when one has overlapping indices.

(C1)
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Figure 5d represents an additional higher order modifi-
cation of the bare hypervertex. Figures 5a-5d, of course,
arise from the rearrangement.

*Supported by the U.S. Air Force Office of Scientific Research under
Grant Af 68-1416.
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The properties of the unstable particles are studied by investigating the Lee model and a modified
form of it. We define the unstable particle to be the complex pole of the analytically continued
Green’s function on the unphysical Riemann sheet. The mass and lifetime of the unstable particles
are determined. Different ways of calculating the renormalization constant are discussed. The
Lehmann-Symanzik-Zimmermam (LSZ) formalism is extended to include the unstable particles.
Decay and scattering amplitudes for the unstable particles are calculated. The formalism is exact
and does not depend on the arbitrary separation of the total Hamiltonian. Comparison with results

obtained by other methods is discussed.

. INTRODUCTION

The main difficulty in dealing with the unstable particle
problem is that the unstable particle has complex mass.
For a Hermitian Hamiltonian, the eigenvalue has to be
real. Therefore, it is impossible to find an eigenstate
for the unstable particle. Without the concept of eigen-
state, the usual definition of a particle can not be ob-
tained. In order to overcome this difficulty, there have
been various prescriptions!4 for constructing the
“approximate” eigenstate for the unstable particles,
Perturbation theory? is the one used in most applica-
tions. This approach depends crucially on the separa-
tion of the total Hamiltonian into the unperturbed part
and the interaction part which is responsible for the
decay. Viewing the fact that the majority of the par-
ticles in the physical world are actually unstable, it is
desirable if we can have a formalism to describe the
unstable particles without an arbitrary application of
the Hamiltonian,

It is thus the purpose of this paper to illustrate the
possibility of extending the LSZ formalism to include
the unstable particles, both unstable elementary par-
ticles and unstable composite states. The formalism
is exact and does not rely on an artificial separation
of the total Hamiltonian. All the decay and scattering
amplitudes of the unstable particles can be calculated.

We shall illustrate our extended LSZ formalism in two
examples: (1) Unstable elementary V particle in a modi-
fied Lee model; (2) Unstable (V8) composite state in the
Lee model.

1t is well known that there are three stable elementary
particles in the Lee model,5 namely V,N and # particles.
In addition, it was shown that a stable (V) composite
state can occur for sufficiently large coupling constant

g in the V-6 sector.® When the value of g is decreased
less than some critical value g 5, this (V8) composite
state becomes unstable. This state serves as an excel-
lent example for illustrating the LSZ formalism for un-
stable composite state.

An example of another type of the unstable particles,
namely, the unstable elementary particle results from
the addition of an extra repulsive four-point interaction
between the N and 6 particles to the regular Lee model,
We can make the elementary V particle become un-
stable. This modified Lee model was suggested by
R.B.Marr and Y. Shimamoto? and from now on we will
refer to it as the Lee model II.

Due to the uncertainty principle,8 the definition of an
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unstable particle is not unique. If we let 7 be the mass
and I'""! be the lifetime (i.e., I is the width) of an un-
stable particle, then there will be an uncertainty in the
definition of mass of the order Am = T'. Furthermore,
since the width I can be considered as a kind of mean
square deviation from the average of a mass distribu-
tion, so there is also an uncertainty on T itself of the
order AT = I'2/m, It is, therefore, clear that m and I
can be defined to a good approximation only if I'" is very
small, i,e., if the lifetime is very long.

Among different definitions which we will not go into
detail here, the one we choose is to relate the unstable
particle to be the complex pole of the analytically con-
tinued Green's function on the unphysical Riemann sheet.
The real part of the pole is defined to be the “observed
mass” of the unstable particle and imaginary part of the
pole is related to the lifetime of the unstable particle.
The determination of the renormalization constant will
be discussed,

The outline of this paper is as follows. In Sec.Il, the
Lee model II is investigated for illustrating the proper-
ties of the unstable elementary V particle, The mass,
lifetime, and the renormalization constant are deter-
mined. The asymptotic assumption and reduction for-
mula for unstable particle are developed in Sec. L.
The decay amplitude of the unstable V particle is cal-
culated in Sec.IV. In Sec.V, the properties of the un-
stable {(V8) composite state in the Lee model is inves-
tigated. The extended LSZ formalism for the unstable
composite state is illustrated in Sec, VI by calculating
the decay amplitudes of the processes

(ve), > V+6, (V8),-N+6+9,

and in Sec.VII by calculating the scattering amplitude
for the process

(Vo) +6 — (Vo) + 6.

Summary and conclusion follow in Sec, VIII.

Il. THE LEE MODEL II; UNSTABLE
ELEMENTARY V PARTICLE

The total renormalized Hamiltonian for the Lee model
II can be written as

H=H, +H, 1)
where
Ho=2Z'myyg, + myYy¥y + Z’? Wp@yGps

Copyright © 1973 by the American Institute of Physics 666
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. . u(W) + u(w)
H =g (‘vaN Zk) (2w)1/2 k + wN % (zw)l/z akwv)
o uw) . u@’)
+ 20m, b, + Gy L 7 (2w)1/2 %a ; (2w')1/2 @
= (k2 + p2)1/2, ()

G > 0, is the coupling constant of the repulsive four-
point interaction. The renormalization constant Z’ and
mass renormalization 6m, are to be determined. The
renormalized coupling constant g’ is defined to be

grz - g(2) Z’.

The two constant in the Lee Model5, namely @, and @,
defined as

Qu=Z'Vi¥, + Vi, Q=2+ da, ()

are again the two constant in the Lee model II because
[Q,,H]=0, i=1,2. 3

The eigenvalues of the @; are denoted by ¢,. Conse-
quently, the L.ee model II can also be decomposed into
the isolated sectors.

We now consider the V-sector which is characterized
by the four tau functions:

1) =01 TW, )Y ,0)]0), (4a)

72(2,w) = 0 | T (W y(H)a o(6) y3(0) |0) @i’ujﬁ , (4b)
u
73(t,w) = 0 | T, (B} (0)a,(0) [0 iz;wf , (4c)
4t w,w') = ERONE (6 | g (Da 0w (0)a (0))[0).
u(w)u(w’)
(4d)

The Fourier transform of these tau functions can be
shown to satisfy the following equations
W —mg) /(W) = 2 + g— 2 E-;‘”i) 2w, w), (5)
(W—my —w)72(W,w) =g' T{W) + G Z) usu’) » T2(W,w’),

2w’ (5b)

W — my— wii(W,u) =g/ T2W) + 6 T “21(0”” ) 33w, wy,

and (5¢)

2w
uZ(w)

+6 Y W) 2w o w).  (54)

" 2w”

(W —my — w)T4(W,w,w’) = 8ppr +&'T3(W,w))

From Egs. (5a) and (5b), 7/(W) can be solved to be

Fw) = (1/ = Z’Zfi“’i, W “zz)l;z)/é'l,(w+ z€)>
where (6)
L(W + ie) = [g(z) + G(W —mg) X [P (W) — Py(W)], (Ta)
w 2 —
PyW) = g3 J7 ol o, (To)
Py = — "o ¥ (7c)

g%+ G(W —my)’
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and
T2(W,w) = 73(W,w)
=g'T"(WHW —my —w + ie)1
w dw Lu2(w Y u’'2 — M2)1/2)
1+ = - (8
( 4n2 (my +w’' — W — i) ®

Similarly, T 4(W,w,w’) can be solved to give
- 2wo ,
TAW,w,w') = kk

u2)W — m , — w)

1

(W —my~w )W — ey — w)

+

X [G + g2 (W) <1 +

uz(wl)(W§ _ u2)1/2>]

W— ie
#2)1/2 )"1 .
W—ie (9)

Now we investigate the analytic properties of the func-
tion L(W + ie€) defined in Eq. (7a). It is obvious that
when W <, + u, L(W + ie) is a real analytic function.
There can be only one zero of L(W) which corresponds
to a physical stable V particle (c.f, Fig. 1). This zero
reduces to that of the original Lee model in the limit of
G — 0, As G — «©,the zero moves toward the value of
the bare mass m,. For sufficiently large (mgy — my),

L (W) will no longer have any zero below the threshold
my + i (c.f, Fig. 2). In other words, by choosing the
parameters properly, we will not have a stable V par-
ticle in the Lee model II,

x f:o aw,

my +wy—

o0 dwuu(wu)(wuz
an2(my + w" —

<1+G u

In the physical region,i.e., W > m, + u,we get from
Eq. (7a) that

u2(W—m,y)
47
X [(W—my)2 — u2]/2 (10)

Im L(W + i€) = [gd + G(W — m)]

which will not vanish for any value of W. Hence, L(W)
cannot vanish in the entire physical region.

1

+ ‘A,W
6| e L
!
I
R(W) ‘
2 !(D
<
S
| '
| E
!
|
1
FIG.1.

Graphs for functions P, (W) and Pp(W) with g <y + p.
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A
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\Rw)
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rew/ |
i
S——— l* N \W
N s L
- —
ie
R(W) ;E’
| €
|

FIG.2. Graphs for functions P, (W) and P,(W) with my >my + .

With the above analysis, we see that by properly choos-
ing the parameters, 7 1(W) will not have any pole in the
entire physical sheet.

Let us analytically continue the Green's function 7 1(W)
in Eq. (6) onto the second Riemann sheet and define

LIiYZ) = L(Z) + 2i Im L(Z). (11)

We now define the unstable elementary V particle to be
the complex pole of the Green's function 71(W) on the
second Riemann sheet. By Eq. (11) this means a com-
plex zero of L1I(z) at z = M

LII(MU) = 07 (12)
where
M, =m! —il/22Z".

v (12')
M, will be referred to as the complex mass of the un-
stable elementary V particle. The real part m, is de-
fined to be the “observed” mass and the imaginary part
T is defined to be the width (inverse of the lifetime) of
this unstable V particle.

m, and T’ can be solved exactly by substituting Egs. (6),
(10), and (11) into Eq.(12a). In the case that T'/Z' < m/—
my, the results of m, and I are

& 5 IS dwu? (w) (w2 — )12 /

m) =m -—<—-
v ° 472 H (my +w —m)) /

— ST fong = m2— w22 w2 — )/

8nZ’
o dwu2(u)w?2 — p2)1/2Yy1 3
<1+cpr —— ) (13)
and
r= (Z'[g% + Gl — g — mR — 2]z u2(mz’,—mN> /
. G o dwu(w)w?2 — u2)1/2\1 1
(1 w2 P E—— ) , (14

where P denotes the principal value of the integral. The
mass renormalization ém,, is

om, =my—m,. (15)

If the coupling constant G is very small, then to the first
order in G, Eq. (14) becomes
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g'2
Ton

r [(m) — m)2 — p2]1/2 42(m) — my)

x <1——‘3- p [ dwuPw)w? — “2)1/2). (16)

272 # (my + w —m))

The determination of the renormalization constant Z’
for the unstable particle is ambiguous. Numerous pres-
criptions® have been given in the literature. In the
stable case, the renormalization constant Z represents
the probability of finding a bare V particle in the physi-
cal V particle state. There are two equivalent ways of
determining Z

Res 71(W) =1, (17a)

W=mv

UNTFIV) =(Nlj, | V), (17o)
where j is the renormalized current of the 0 field

j=joZV2 =g ¥, + h.c.). (18)

Since we do not have an eigenstate for unstable particles,
the renormalization constant can no longer be inter-
preted as the “probability”, By analogy with the stable
case, we list three ways of determining the renormaliza-
tion constant Z’ for the unstable V particle.8

(i) Res [T1(W)]¥ =1, (19)
WM,

where
[Fr(M] 1 = 71(W) + 2 ImTL(W). (20)

This would lead to a complex value for Z’ which implies
the fields ¥, and ¥ are not Hermitically conjugate.

(i1) \ Res [71(W)]1 l =1, (21)
w=M,
Z' determined by this condition can be a real quantity.

(iii) | Res 'Fl(W)' =1, (22)
W=m;

{Il. ASYMPTOTIC CONDITION AND REDUCTION
FORMULA FOR UNSTABLE STATE

Let us now discuss the asymptotic condition for the un-
stable V particle in the Lee model II. The in and out
states are defined at time £ — + w0, Since an unstable
particle will decay in a finite time, there can exist no

in and out states associated with an unstable particle.
We must modify our asymptotic assumption to allow

for this property. The extension of the asymptotic con-
dition to unstable particle can be constructed by a slight
modification of the stable case. It was shownl0 in the
stable case that the physics remains the same no matter
whether we use the field ¥, () or Y ,(f) f d3k a,(t) or
linear combination of them as the interpolating field for
the stable V particle. In other words, a physical particle
can be described by various interpolating fields as long
as they have the correct quantum numbers. Now in the
Lee model II, the most general local field operator for
the unstable V particle with quantum numbers ¢; = 1,
4, = 1 can be written as

Bi(t) = Ay, () + CYy(t) [ a3k a,(t), (23)
where A and C are c-numbers.
We no longer associated the unstable V particle with the



669 T. Liu and R. L. Zimmerman: Unstable particle scattering

field y (¢), but together with the field ¥ (£) [ d3k a,(t)
as we did in the stable case. By analogy to the stable
case, we assume the following asymptotic condition for
the unstable V particle:

lim (8le™M!BI@®)| @) = (22)Y2(B |BY |a)),
t3T out
where (24)

M, = m} — iT'/2Z’

is the complex mass of the unstable V particle deter-
mined by the position of pole on the complex plane. We
relate the in and out fields that characterize the unstable
V particle with the field operator B§(¢) at time ¢ becom-
ing a very large value T, Notice that as T — * «,
e"iM,T— O -the in and out fields become meaningless.
This is expected because we know that the unstable
particles do not exist in the infinite past or future.

The other notations in the assumption (24) are standard:
((a| and {{B | are arbitrary physical states, Z2 is the
renormalization constant such that the renormalized
field operator B (t) is defined as

Br(t) = By(t)/(Z2)1/2. (25)

The value of Z% will be determined later.

An unstable V particle is created by operating with the
in-field operator Bf; .

The asymptotic conditions for the fields ¥ (t) and a (f)
are assumed to bell

lim (B |ty @ lad=(Blv, [a)  (26)
—-=T in

and out

lim 3 f@,w) et KB an)]a)

—(elay, la), @D
out

where f(w’,w) is a good function of w’ centered about the
point w’ = w satisfying the condition

0 = R’
> frwn,w) fwr,w) =] as ©
I' 1 k="Fk,.

(27)

We can extend T to + «© without causing any trouble be-
cause mass m, and energy w are real quantities, How-
ever, for the convenience in deriving the reduction for-
mulation, we will keep the conditions as written in Eq.
(26) and (27).

Consider the matrix element
saﬂ E(<ﬁ; "Ilout l a;nm>)) (28)

where o, 3, represent the N particle or the unstable V
particle. m,r represent the number of the 8 particles
in the incoming and outgoing states, respectively.

With the L.SZ asymptotic assumptions in Eqs. (24), (26)
and (27), the reduction formula can be derived, in an

am:llogous way to the stable case in the Lee model, to
be

1
Sep =6,,0, ¥ ————
b (n!m!)rz

mn ~of

f_§ J atar exp[i(mg + 25 w)t']
j=1

-
. d L . d <
X(td———mﬂ_?—iw]> Taﬁ(tlit) (Z"E-""La-’-.z w')

i=1
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A
ImW
ReW
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FIG.3. The contour C.
n
X exp[—— i <ma + 25 wi>t], (29)

i=1

where
m n
T ) SO T ()1 a, )y, (t) I g, (1))]0).
j=1 7 i=1 i (29°)
Because of the asymptotic condition for the unstable V
particle assumed in Eq. (24), the complex mass M, en-
ters in the reduction formula whenever an unstable V
particle is involved. For proceeding the calculation, an
extended definition of the delta function with complex
argument needs to be made. This can be done by con-
sidering the following integral

1= [ awfon) [* atescwan, (30)
— /. )

where 2 = x — #y is a complex number and f(W) is an
analytic function or has singularities only along the real
axis,

Assuming the order of integration in Eq. (30) can be in-
terchanged, we get

I ='2171 [Fat [ awpow)eivas, (31)

Using the analytic properties assumed for the function
f(W),we can lower the region of integration to the con-
tour C(cf. Fig. 3) which runs from W = — o — iy to

W = w — iy(y > 0). Equation (31) becomes

1=§1; [Tat f, awrw)eitw-2)e, (32)

Define a new real variable E such thét

E=W+iy, dE=dWw, (33)
then

I=_2!'; j;* dat J:+ f(E_iy)ei(E'x)tdE' (34)
Interchanging the order of integration again, we get

I= f_* dEF(E — iy) % f_* dteilE-xt (35)
Notice that

%T f_+ dteilE~x) = §(F — x), (36)

which is the regular definition of a Dirac delta function.
Therefore,

I=f(2). @7

From Egs. (30) and (37) we see that it is reasonable to
define an extended delta function with complex argument
as following
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6(W—z) = % [ ateiw-ax (38a)

and

[ awrw - 2) = f(2)

for an analytic function f(W).

(38b)

Nakanishi3 discussed complex delta function with simi-
lar ideas but different method.

Using the reduction formula in Eq. (29) together with the
definition of extended delta function in Eq. (38), we can
calculate the various matrix elements for both decay
and scattering processes.

We will now determine the renormalization constant Z?
defined in Eq. (25). Consider the following unstable V
particle propagator

ToW) = —i [ dtei%t(0| T(BL()B2*(0))|0). (39)

Substituting Egs. (23) and (25) into (39) and using Eq. (4),
we get

O =
+u"/ -+ + u(w) o
X (AA F1(W) + (AC* + A*C) fd%W 72(W, w)
v [ 33y Y@ U@’) -, ,)
+ cc* [ d3kd3k Wiz | (W, w,w")). (40)

We have discussed several ways to determine the re-
normalization constant Z’ for the field ¥,. From among
these we will now pick the condition in Eq. (21), namely,

l Res [-?1(W)]111 =1 (21)
w=M,
and
‘ Res [72 (W)]4 l = 1. (41)
w=M,

The methods of analytical continuing the tau function in
Eq. (40) are not unique. Since the higher tau functions
can always be written in terms of the lower ones (c.f.
Eqs. (8),and (9)], we will now analytically continue only
the lowest tau function involved, i.e., 7 1(W), for the con-
tinuation of 7 ?(W). Using Eq. (8) and (9) together with
conditions in (21) and (41), Z? can be determined to be

u(w)
(2w)YV2M, — my — w)
d3k'u2(w') ) t | @2
(Quw')(my +w' — M,)

(Z2)1/2 = |A +cg' [ a3k

xé+cf

for arbitrary real c-numbers A and C.

IV, EXTENDED LSZ FORMALISM FOR THE
UNSTABLE V PARTICLE DECAY

By using the reduction in Eq. (29), the matrix element
for the decay process

Vv, >N+6,
can be written as
e
se=J2 S dtdt’ei(mNW)t'(. %—mN—w>
(_._—__.

% (017, a1 By ) [0) (i &+ m,) e“'“‘v‘(.4 ,
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We have defined the unstable particle to be the complex
pole of the analytically continued Green's function on the
unphysical sheet. Therefore, we first analytically con-
tinue the matrix element as functions of the variable W
onto the unphysical sheet, and then evaluate them on the
energy shell. Among many ways of analytical continuing
the tau functions, we again choose to analytically con-
tinue only the lowest tau function, i.e., 7 (W), With the
help of Egs. (4), (8), (9), (23), (25) and (38), Eq. (43) be-
comes

27

= — G(Mv _
(Zz)l/z

d mN"—w)

X W M)y,

% '[A +c & [ dw' (w'2 — u2)1/2 42(w’)
472 ¢ M, — my— w’)
9 (l + G feo dw”uz(w")(w”z—u2)1/2>'1]
qn2z * (my +w"—M,)
G e dwruRm)wr? — u2)1/2> -1
4r2 ¥ (my +w™ —M,)

xg' (1 + .
(44)
From this decay matrix element, we can calculate the
total probability per unit time, of the unstable elemen-
tary V particle decaying into the continuum |N§,)) for

all momentum k, which by uncertainty principle is the
width of the decay.

Because the extended delta function with complex argu-
ment appeared in Eq. (44), we will now modify slightly
the conventional formula for calculating the width of the
decay as follows:

_ 53 | 43k
E= l fallk T x (2m)3

where T is a period of time and d3k/(27)3 is the phase
volume factor.

Notice that

) (45)

[276(M, — m ) — w)]2 = 472 6(0) 6(M,, — my — w)
= 29T6(M, — my — w) (46)

T/2
S— di =L, (467)
T - large 27w

~r/2 "o
Substituting Eqs. (44) and (46) into (45), the width of the
decay can be calculated to be

E =g'2|u2(M, — my) [(M, — m )2 — u2]t/2 [/

G (o dwud(w)w2— p2)1/2 2)-1
,.(21r|1 e L o + 10— 1) | @7

6(0)

which is independent of the form of the field operator
for the unstable V particle. The same result occurred

for all S-matrices in the stable case of the Lee
model, 10,12,13,14

If the complex part of the mass of the unstable elemen-
tary particle can be neglected, then to the first order in
the four-point coupling G, Eq. (47) becomes

2
E = u2(m) — mpy) [m) — my)2 — u2]i/2

LG p [ don2@)w?— )Y\ e
><<1 Rl e e ) (48)
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This is the result for width I'" obtained in Eq. (16) under
this same approximation. Recall that width I" was de-
fined to be the complex part of the pole of the analyti-
cally continued Green's function 71(W) on the unphysical
Riemann sheet. From Eqs. (16) and (48) we see now that
the decay width E calculated by our LSZ formalism
agrees with the width determined by the complex pole of
the Green's function when the complex part of the mass
of the unstable elementary V particle is neglected, They
differ from each other in the higher order terms which
is expected from the uncertainty principle explained in
Sec.I.

By using the reduction formula and definition of the ex-
tended delta function, the S matrix for all the unstable V
particle scattering processes can be obtained.

V. UNSTABLE (Vvs) COMPOSITE STATE

First, let us review some results related to the (V)
bound state in the L.ee model., The S matrix for the
elastic scattering process

V+o, > V+6,

in the Lee model is6
1+ hw)Aw)

2
SVE, = &,y + 27 6w — w) L2 g2 x

2w hw)[1 — hw)Aw)]’
where (49)
hw) = w[1 — Bw)]
- g o dw’ uz(w )(w’z — “2)1/2
a (1 " 472 f w2’ —w — i€ ) (50)
and
1 [ 1
=— = dw’ 1 ——
A ;)
x 1 . (51)
w' @’ — w){1— Bw — w’)}
For simplification, we assume m, = m, = m.
It was shown that D(w) defined as
Dw) =1 — h(w)Aw) (52)

has a real zero w; below the threshold u for sufficiently
large coupling constant g.6 The zero corresponds to a
stable (V9) bound state with total energy m, =m + wy.

The condition on the coupling constant g for having a
(V8) bound state is

2 2 = o dw' (w'2 — p2)1/2 y2(w’) 53
£ >gB (4 2 f“ IZ(w; —“') ) ( )

If the condition in Eq. (53) is not fulfilled, i.e.,if g < g,
then D(w) will not have any zero forw < pu. Asw > p,
write

D(w) = hw){[1/hw)] — Atw)}. (54)
From Egs. (50) and (51), we can get

Im[h(w)]t = [—%f—; 2 () w2 — u2)1/2] / | k(o) |2

and (55)

ImA(w) = —

- 1
w- i dw' 1 (________
Jy R B(W’)>
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Im[1 — Bw — w')]

w' W' —w)| 1 — Bw — w’) |2

(56)

From Eqs. (55) and (56), we see that D(w) has a non-
vanishing imaginary part for w > u, Therefore, as

g > g5, the function D(w) does not have any zeros in the
entire physical sheet for all w.

In summary: (1) As we decrease the coupling constant g
such that g < gp, SV‘,Z, will not have any real pole below

the threshold; (2) S/%. does not have any pole in the en-
tire physical region.

In field theory, the S-matrix can always be calculated in
terms of the Green's functions. Defining an unstable
particle to be complex pole of the analytically continued
Green's function is then equivalent to defining it to be
complex pole of the analytically continued S-matrix on
the unphysical Riemann sheet.

We now analytically continue the S-matrix Sf9, for the
V + 8 elastic scattering onto the unphysical sheet.
First, we rewrite S}P, in the following form

2
SY8, =6,, + 2mi 6w — w') Eﬂ’—)g'f-’

8 [w<1 + jC(w) - B(wﬂ_l ®9

where C(w) is defined as

¢ [1-8(2)] Zw— 2)[1 — Bw — 2)]

The contour C, is shown in Fig. 4.

Cw) =— . (58)

The method of analytical continuation of the function
C(w) to the unphysical sheets is not unique.l5 Here, we
arbitrarily choose to expand C(w) into a Taylor series
about the point w = ¢ and neglect higher order terms

Cw) =Cu) + w— wC'(w. (59)

C(p) and C’(u) can be calculated by contour integration
which gives

C(u) = B(w)/h(w) (60)
and
c Bl
= uh(u)
o 12 _ /

(61)
We can now analytically continue the S-matrix $7¢, in
Eq. (57) onto the second Riemann sheet as

Sy =6, — 21 6w — w') g2 1; (1:)
2 -
g ,  (62)
[ w 1+ w(C(w) + (w'—l-l)C'([,L))]
L
G

A 4

-
_

N

FIG.4. The contour C,.



672 T. Liu and R. L. Zimmerman: Unstable particle scattering

where
1~ p8w) =1~ Bw) + 2¢ Im[1 — B@w)]. (63)

We now define the unstable (V6) bound state to be the
complex pole of Eq.(62) at

2o =w, — iTB/2. (64)

If we denote the complex mass of this unstable {V8)
bound state to be M 5, then

Mg =m+zy=mj —iT'B/2, (85)
where
mly =m + wh (66)

is the “observed” mass of this unstable (V9) bound state,
T'; is the inverse of the lifetime of this unstable (V9)
bound state,

The value of m{; and I'; are determined by the real and
imaginary parts of the following equation

1— Bl(zo) — 2{1 + z5[C(w) + (2 — WC"(W]}1 = 0. (67)

Vi. DECAYS OF THE UNSTABLE (9}
COMPOSITE STATE

In this section, we will calculate the decay amplitudes
for the unstable (V8) composite state by the extended
LSZ formalism constructed in Sec, III,

The most general local interpolating field operator for
the unstable (V8) composite state with quantum numbers
4, = 1, g, = 2 can be written as

BIo() = A, (1) [ dPka,(®)

+ Cy(t) [ askidhya, (0 @, (1), (68)

where A’ and C’ are real c-numbers,
The renormalized field operator B//®(¢) is defined to be

B*(t) = BP(t)/(2))V/2, (69)

where ZJ° is the renormalization constant which can be
determined by calculating the following unstable {V8)
composite state propagator

TIOW) =—i [~ atetwt(0| T@BLPWBLO)I0).  (70)

Substituting Eqs. (68) and (69) into Eq. (70), we can ex-
press 7,78(W) in terms of the tau functions defined in
Egs.(Al).

Analogous to the unstable elementary V particle case,
we require the following condition

l Res [7)o(W)]U l =1, (1)
W:NXB

As we said once previously, there are many ways to con-
tinue the propagator 7 Yo(W) onto the unphysical Riemann
sheet, Same as before, we will not analytically continue
only the lowest tau function 73 as a function of the
variable W onto the unphysical sheet. By using the Egs.
(A2-A4) and (71),Z® can be determined to be

d3ku(w)F (Mg, w)
Qw)Y2 (M, — m — w)
A3k uw’) 1)
(w1 2(My — m —w — w’)) N

ey

X<14'+ zgclf
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where (c.f. Eq. A5)
~ F(My, w)F{Mg,w')
Res {T5(W,w,w’)]1 = .(73)
WMy My —m —w)(My —m —w')

The asymptotic condition for the unstable {(V9) composite
state operator BY9(f) is assumed to be

lim (1B ) = (BIBL |k, (T9)
out

The in and out fields are related to the Heisenberg field
BYo(t) at time ¢t = = T where T is some very large value.
An unstable (V8) composite state is created by operating
with the in field operator B)°".

in

We are now going to calculate the decay amplitudes for
the following two processes:

(a) (ve), » V+a,,

() (V8), > N+86,+86,. .

Case (a)
(V6), > V+6,.

By using the asymptotic conditions and the reduction
formula, the decay matrix element can be written as

—— >
1 T ; . d

sl didt eitmruwdt [§ & 4w
= Gz L K

where Z, is defined in Eq. (A7) and Z° was defined in
Eq.(69).

Substituting Eqgs. (A6), (68) into Eq. (75) and using Egs.
(Al-Ad), S-matrix can be expressed in terms of 75(—).
We then analytically continue 7 5(—) onto the unphysical
Riemann sheet. With the help of Eq. (73), S/® can be re-
duced to

u(w)
N f A3k ulw” )F (Mg, w)F (Mg, w")

(w")V2(My — m — w”)

, , d3k u{w’}
x (A +2gC" [ VR, —m—w

5@ 2ni
1 = e
(z7e*) 1/2

&(Mg — m — w)

), (76)

where YZ, was cancelled by using Eq. (A8).

In analogy to the unstable elementary V particle case,
the total probability per unit time of this unstable (V9)
composite state decays into the continuum | v8)) for all
momentum k can be calculated to be

E@ = .2’:1_7 u2(My — m)[(My — m)2 — p2]1/2
F2(My, M, — m) ], (T

where (ZY9*)1/2 was cancelled out by using Eq. (72).

Case (b)
(V9), > N + 6, +6,,.
The width of this decay process can be calculated by the

same way as we did in the case (a). Omitting the de-
tailed calculations, we will only give the result:
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po = &
27
l f d3ku2(MB —m — w)uz(w)[(MB_ W o— w)2_ #2]1/2
g (27)3(2w)
% < F(MB,W) +F(MB,MB—Wl—w)>2| (78)
MB —m —w w

From Eqs. (77) and (78), we see that the widths of the
decays of the unstable (V8) composite state are again
independent of the form of the field operator.

Vil. UNSTABLE {V6) COMPOSITE STATE
SCATTERING

We are going to investigate the problem of scattering a
6 particle off the unstable (V8) composite state,i.e.,
(Ve), + 6, — (V8), + 6,..

By using the asymptotic condition and the reduction
formula, the S-matrix element for this process can be
written as

>
S;I;;e,)"e = 6kk' + ff dt dt’ ei(Mg*w)t<i ‘% "‘MB _ )
x (0| T@BPW®HB () | 0)

.
x <1 L Y w) AR (79)
ar

Substituting Eqgs. (68) and (69) into Eq.(79) and using
definitions of the tau functions in the V-26 sector of the
Lee Model (c.f.Eqgs. (A9-A12), we can reduce the S
matrix to

u2(w
S/(el’/ae')ue =06,, + I_____ Sw — w')(w — w’')2 w)

zye| 2w
dsp ,d3p i“(wp,)“(wp;)

X
ff (4wP1wPi)1/2

X<A’+2gC' ff(

T B(W’wpliw’wl:lf w,)

d3pouw, 2) )
2wP2)1/2(W —m—w—w, — wpz)
B pyuw,) )f
(2w1:2)1/2(W —m—w —w, — WS e
~ ~ (80)
Since the result for 79(—) is in terms of 75(—), among
many ways, we will again analytically continue only the

function 7 5(—) onto the unphysical sheet, To the lowest
order term in Eq. (A13), we get

X (A’ + 2gC’ f

' (w
'S(kV,f?ue ‘ = B4y + 276w — w’) o)

2w

x | F2(Mg,w)h(Mg —~m —w)|. (81)

The S-matrix obtained in Eq. (81) is independent of the
form of the interpolating field operator for the unstable
(V8) composite state.

IX. SUMMARY AND CONCLUSION

In this article, the unstable particles were investigated.
We defined the unstable elementary V particle in the
Lee model II to be the complex pole of the analytically
continued Green's function on the unphysical Riemann
sheet. The extended LSZ formalism was developed for
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this unstable elementary V particle. The decay ampli-
tude for the process V, = N + 6 was calculated. The
S matrix for the unstable V particle scattering process
can also be obtained.

The essence of this extended LSZ formalism is the
assumption of the asymptotic condition for the unstable
particle in terms of its complex mass. The Green's
functions are analytically continued onto the unphysical
Riemann sheet where the unstable particle manifests
itself as a pole. The formalism is exact and does not
depend on the arbitrary separation of the total Hamil-
tonian,

By treating the unstable composite state on the equal
footing as the unstable elementary particle, the extended
LSZ formalism can also include the unstable composite
state. We illustrated our formalism on the (V8) compo-
site state in the Lee model. When the coupling constant
is decreased less than some critical value, this (Vo)
composite state then becomes an unstable (V6) compo-
site state, The decay probabilities for the processes

(ve), > V+46, (V8), > N+6+86
and the S matrix for the process
(ve), +6 — (ve), + 6

were calculated.

Both the unstable elementary V particle in the Lee
model II and the unstable (V8) composite state served
as two excellent examples for illustrating our LSZ
formalism for the unstable particles.

We compared the decay width of the unstable elemen-
tary V particle calculated by our extended LSZ forma-
lism with that determined by the imaginary part of the
position of the pole on the unphysical Riemann sheet.
They agreed to each other in the lowest order approxi-
mation which is expected from the uncertainty principle.
In fact, our LSZ formalism results can be shown to re-
duce to those obtained by perturbation theory in the low-
est order approximation as one would expect if our ex-
tended LSZ formalism is correct.

We also like to point out without showing the proof that
our results of mass, lifetime, and renormalization con-
stant agree in the lowest order approximation to those
determined by defining the unstable particle to be the
real pole of the reaction K matrix.16

Throughout this article, we have always used the most
general local interpolating field operators. The very
interesting result we obtained is that all decay and
scattering amplitudes for the unstable particles are in-
dependent of the form of the interpolating fields.

The analytic continuation of the various matrix elements
involving the unstable particles is not unique. Also,the
determination of the renormalization constant for the
unstable particle is not unique. However, the various
results agree to each other in the lowest order approxi-
mation as expected from the uncertainty principle.

APPENDIX

The four appropriate tau functions in the V-6 sector of
the Lee Model were defined as6

ww)al’) (0 | T, (Da,(Oy;(0)a}.(0)) | 0),

(Bww'w")1/2
u(w)u(w u(w”)

X (0 | T(y y(t)a,(t)a,. (Oy;(0)a;.(0) | 0)

T5(t, w,w’) =

T8, w,w' ,w”) =
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(Bww'w”)1/2
u(w)u@w uw?”)

X (0 | T@, (t)ay(t)y3(0)a; (0)as,(0)) [0,

T7(t,w,w’,W”) =

(16‘“}10'14)””}”’)1/2
ulw)u(w Yu(w” yu(w™)

x(0 | T2, a, O%(0)a;. (0)a;m(0) | 0).

T8, w,w ,w",w"”) =

(A1)

It was shown® that these tau functions satisfied the fol-
lowing relations

glTs (W, w,w") + 75(W,w’, w")]
W—m—w—w

?G(W,w,w’,w”) = » (A2)

-~ 75 n + ASW ”
TI(W,w,w' ,w") = oW, w,w) + T5W, w,w")] s
W—m—w—w

(A3)

4ww’(5kk" ﬁk.km + Gkk"' ak'k")
u2(w)uZ w’)(W—m—w—w')

+ g[?7(W; wl,w/r’wm) + 7?7(W,W,w”,w’”)]
W—m—w—w '

T8(W,w,w' ,w" , w"”) =

(A4)

The solution of 75(W,w,w’) was derived® to be
(W, w,w’)
200, + g2
wZ(wh(W—m —w) (W —m—w)(W—m —w')
| — 2h(W — m)
lww'[1 + (W — m)[*(W — m)]
X [(W—~m—w)[*(W—m—w) + (m — W (W—m)]

X [(W—m—w)*(W—-m —w') + (m — WI (W — m)]

1
* [1—-BW—m]W—-—m—w—w)
o m—W (m —w)2
+ I'(W m)[W—m-w_W'+ — ]

+[m+w ~WYW—m—w—w)+ww-—w)
o (m— W + W)W —m —w’)
w’ — ww' (W —m —w —w’)
+[m +w—WYW—m —w —w) +ww —w)]
% m+w—WI'(W—m—w) ,
ww—w' )W —m — w—w’')
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where

=1 o,
I(z)=}—fn dem<

1 ) 1
1— ) w1 — B(W —w)w’ — z).
(A5)

The most general local interpolating field operator for
the stable V particle in the Lee model could be written
aslo

BY(t) = Ay, (t) + Cyy(t) [ d3ka,(t) (a6)

and the renormalized interpolating field BV (¢) was de-
fined as

BY(t) = BY(1)/(2,)V/2. (A7)

Z, is the renormalization constant and was calculated
to bel0

d3ku(w)

2 _qCruw)
(z,) A+cg [ G0 )

(A8)

The appropriate four tau functions in the V-2 sector of
the Lee model were defined asl2

4 (zwi)l/z
T, Wy, Wo, Wy, wy) = 1 ——
i=1 u(w,)

X0 | T(Y,([)a,, (t)a,, )y} (0)a},(0)a;,(0) | 0),
TlO(t’wl,wz,wa,w4,w5) = l§I

x(0 | T(WN(t)ak]_(t)akz (t)akg (t)WZ(O)a;4(0)ak5(0))|0>,

11(¢ ) o (2u0,)/2
TNt W, Wy, wa, W, Ws) = =7
WL WP W) = L )

X (0 | T(W, (8)a, 1 (£)ay, ()44(0)a;3(0)a; 4 (0)a,5(0))]0),

(zwi)l/z

1 ulw,)

fom{-2

TI2(t, Wy, Wy, Wg, Wy, Ws, W) = _
i

]

x{0 | T(‘PN(t)akl (t)a},z (t)ak3 (t)\%(o)a,';4 (O)a;:5(0)a/:6(0)) {0).
(A9)

_ These tau functions satisfied the following equations

TIOW,w , Wy, W3, Wy, Ws) = &

TV W, 0y ,wy, 0y, Wy, ws) = W —m ~wy —w, —wg)™1

[FOW,wy,ws,w,,wg) + TOW, 0wy, w5, wy,ws)+T(W,w,,wy,w,,ws)] (A10)
b
W—m—w; —wy —w,
X [;Q(W’ wlywz,wyws);Q(W,wpwz;w:;;ws) + ?9(W,w1,w2,w3, w4)]; (A1)

Ti2(W ) 3 2w,
Wy, Wy, Wo, W, , W, W =TI
T ( W sy W3y WMgsW¥5y%¢g i1 uz( i)

) (W—m—wy —wy —ws3) 8,1 14842 5043 16 T Ok1 40k £60k3 45

+ 841 4502 #4043 k6 + Or1 £50k2 #60k3 k4 T 01 26082 84043 k5 + Ok1 k60e2 £50k3 kal

+ g[TIL(W, wy, gy, ws, we) + TLUW, Wy, wy, wy, w5, w,) + T11(W, 01,0y, w0y, w5, w)] X (W — m — wy — w, — wy)™1,

(A12)

The result of 79(W,w,,w,,w;,w,) solved by an iterative expansion method13 is
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THW + m,wy,wy,ws,w,) =

_4w,w; (841 43062 ke + Or1 24042 43) +

675

1

20209 84

u2(w 2w )h(W — wy —w,)

MW —wy — w)h(W—w, —w,)

20 (W — w,,wy,wa,) +
uz(wz) g ( 2sWq, 3)

AU (W —wy,wy ,w)U (W —wy,wy,w,)
W —w, — ws) ’

+g_6 foo dwu (W) w2 — p2) 12U~ (W —wy, wy, w)U (W —w,w,, w, YU (W—w ,, w,w,)

472 M

g8 foo dwu?(w) w2 — u2)1/20~(W—wy,w,,w)
16n4 hW —w —w,)

XUW—w,wy,w U (W—w',w,w))U(W—ws,w,w,)+ -

where
2Wd, ,,
U-(W, 0, w0") = 2Rk gy _ )
&3u?(w)
— _ oyt ’
+ h(W — w)h(W — u )'; W+ m,w,w ). (A14)
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